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ABSTRACT 

This r e s e a r c h  develops methods of self-reorganization which 
c a n  p r w i d e  a complex linear dynamic sys tem with the ability to  r e -  
structure itself t o  compensate for  fai lures  in i ts  effectors and sensor s  
and c h a ~ g e s  i n  the l inear dynamics. The approach taken i s  t o  identify 
t h o  fai lure  o r  change in the sys tem and use that information to  r e -  
s t ruc tu re  a feedback control loop to  maintain closed-loop stability if 
possible. Controllability and observability cr i ter ion a r e  used to  
evaluate the potential ability of a sys tem to tolerate  fai lures  in i ts  
effectors-; and sensor s .  A lower bound i s  established fo r  the number 
of effectors and sensor s  a l inear time-invariant sys tem requi res  fo r  
comp let c? controllability and obs ervability . The problem of identifying 
fa i lu res  and changes in the sys tem is solved through the use  of detec- 
tion f i l te rs ,  which produce e r r o r  signals indicating the location of a 
failure cr change. It is shown that it is  always possible to  construct a 
fnlter capable of detecting any single fa i lure  o r  change in the observable 
dynamics of the sys tem.  Extensive r e su l t s  a r e  developed on the design 
of a f i l ter  capable of detecting a substantial  number of different fai lures  
or  changes. When the s t a t e  of the sys tem i s  fully measurable ,  a single 
filter can provide information about a l l  effector and sensor  fai lures  and 
all changes in dynamics. P rac t i ca l  design algorithms a r e  presented. 
T3 deal  .vvith the feedback restructur ing problem seve ra l  algorithms 
are presented for  determining a linear time-invariant s ta te  feedback 
l a w .  These algorithms can b e  used on-line to  produce any desired 
closed-l3op poles for  the controllable portion of the system. 
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G E N E R A L  NOTATION 

1. Lower c a s e  le t te rs  indicate vector o r  sca la r  quantities ; 

upper case  le t te rs  indicate mat r ix  quantities o r  Laplace 

t ransforms.  

11. The following quantities a r e  general  n-vectors: w,  x, z ,  2 . .  
1 

111. The following qumti t ies  a r e  general  integers: i, j, k, ki, 

1, p .  

IV. The following a r e  general  mat r ix  quantities: Q, S . 

V'* T is a ge.nera1 coordinate transformation; a subscripted T 

is a specific coordinate transformation defined in the 
A 

vici.nity of its use.  T is a general tr iangular matr ix;  
A 

a subscripted T is a specific t r iangular  mat r ix  defined 

in the vici.nity of i ts  use.  

VI. Subscripted vector and mat r ix  quantities not appearing 

explicitly in the table of symbols a r e  partitions o r  elements 

of the unscripted quantity, e. g. , A ij is a partition of A .  

A lower case  le t ter  is used when the  partition is a vector 

o r  sca la r  quantity, e. g. ,  bi is the ith column of B. 

Underscores  a r e  used occasionally to  indicate a vector 

quantity which may be  confused with a sca la r  quantity. 



VII. The following notational ru les  apply to any quantities not 

appearing explicitly in the table of symbols: 

1. ( )T indicates a transposed quantity. 

- - 
2 .  ( ) and ( ) indicate transformed quantities 

resulting f rom coordinate t ransformat  ions. 

N 

3 .  ( ) indicates an augmented mat r ix .  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

A self-reorganizing sys tem is a sys tem capable of a l ter ing its 

own internal s t ruc ture  in o rde r  to  maintain a satisfactory performance 

level in spi te  of changes o r  failures in i ts  components o r  changes in rhe 

environment. The goal of self -reorganization is reliability. As  

engineering sys tems become m o r e  complex, the problem of achieving 

reliabili ty becomes increasingly difficult. When a large number of 

components is involved, the chance that one o r  m o r e  of them will fail. 

can be  significant even if the components a r e  highly reliable a s  indi- 

viduals. One way of increasing overal l  reliabili ty is to  increase the 

reliabili ty of individual components. Often such improvements must  

await technological developments and scientific advances in a r e a s  

related t o  the theory, design, construction of specific components. 

Usually the sys tems engineer is concerned with another approach to  

achieving reliability, which is  the use of redundancy. Redundarlcy can 

take many forms,  but basically it may be  regarded a s  "padding"> o r  

providing somewhat m o r e  than is  necessary for  the sys tem to function 

satisfactorily.  In this  way certain component fai lures  can b e  tolerated 

without causing the fai lure  of the sys tem a s  a whole. 

One of the s implest  kinds of redundancy is what might be called 

standby redundancy. This type of redundancy is seen  in the use  of spare  



components and backup sys tems.  In case  of fai lure ,  the malfunctioning 

component o r  sys tem is simply replaced by the s p a r e  component o r  

backup s ~ r s t e m .  When this  replacement process  is car r ied  out auto- 

maticaIEg, the sys tem exhibits an elementary f o r m  of self -reorganization 

One of the appealing features  of standby redundancy is i t s  r e l a -  

tive simplicity, both in design and implementation. Design of a s p a r e  

component, for  example, may be  a s imple mat te r  of duplicating the 

pr irnary component. Implementation is normally accomplished by 

isolat ing a defective component and switching in a spa re .  Seldom is it 

necessary t o  significantly al ter  other pa r t s  of the sys tem t o  obtain 

compatibility with the s p a r e  component. Therefore,  no extensive 

logiea l capacity is necessary to  implement a replacement.  How ever ,  

even in ellis elementary f o r m  of reorganization,one part  of the process  

which is not always s imple is the detection o r  localization of a fai lure  

in  t ime  to deal with it before it causes the fai lure  of the ent i re  system. 

Some kinds of fai lure  can be detected and located immediately by s imple 

sensory ~nformat ion  ; f o r  example, loss  of p res su re  in a hydraulic 

system, In other cases  the problem of locating a defective component 

is circumvented by grouping a number of components into a single unit 

whose fai lure  can b e  detected easily. Then, instead of trying to  locate 

a par t icular  defective component in the unit, the ent i re  unit is replaced. 

A backup sys tem is an extreme example of this approach. It is a r a the r  

inefficierrt use  of hardware,  s ince a number of good components a r e  

discardetl along with the  defective one. 

Although it can be  an effective means of achieving reliability, 

standby redundancy with replacement reorganization has  cer tain l imita- 



t ions.  In many cases ,  providing s p a r e  components is  not the most  

efficient use of hardware.  Better performance can often be  achieved 

by making simultaneous use of a l l  redundant components instez d of 

allowing them to remain idle until fa i lure  of the pr imary  component. 

F o r  instance, a number of redundant sensor s  measuring the same  

quantity can produce a more  accurate  est imate (i.  e . ,  a smal le r  variance) 

than a single sensor .  A number of devices whose total  output i s  the sum 

of individual outputs (such a s  force-applying devices o r  paral le l  

connected amplifiers) can also b e  used m o r e  effectively in concert than 

individually. Not only i s  the total  capacity o r  saturation level ~ n c r e a s e d ,  

but the average operating level of each device i s  reduced. A lcwer 

operating level may yield a longer average lifetime for  each device, 

The  s a m e  argument applies to a group of components whose total output 

is the product of individual outputs, such a s  cascaded amplifiers.  

Admittedly, in the case  of components with limited lifetimes wk ich are 

not much affected by operating levels, standby redundancy may stilk be 

the most effective way to achieve acceptable reliabili ty.  

A second limitation of standby redundancy i s  that it provides 

little protection against degradation of performance due to  changes in 

operating charac ter i s t ics ;  fo r  example, changes in dynamic behavior 

such a s  might b e  caused by environmental conditions. If the changes 

can be predicted pr ior  to  putting the system into operation, and they are 

not too numerous, it may be  possible to  incorporate seve ra l  operating 

modes in the system. A s  changes occur,  the sys tem could be  switched 

to  the mode appropriate for  existing conditions. However, determining 

when such changes occur may s t i l l  be a significant problem. If the 



changes a r e  not known ahead of t ime,  then a m o r e  general  res t ruc tur ing  

capability wil l  b e  necessary to  deal with them. 

The motivation, then, fo r  turning to  m o r e  sophisticated seLf- 

r eorganlzation schemes is to produce a sys tem with a grea ter  capa- 

bfkity for. coping with changes in the sys tem and in the environment, and 

to  make m o r e  efficient u se  of redundancy. With grea ter  restructur ing 

capabilities it becomes possible to employ a kind of redundancy which 

i s  more active than the standby redundancy described above. Instead of 

providing s p a r e  components, redundancy is obtained by designing the 

active components to  supplement each other,  o r  to  s e r v e  overlapping 

functions. Then when a component fai ls  it is not replaced by a spa re ,  

butits function is taken over by other active components. 

rtln important special  case  of this kind of redundancy is  seen in 

the use of redundant multi-dimensional a r r a y s  of like components which 

measure o r  control a vector quantity. F o r  example, the inertial  

angular velocity of a body can be  measured by th ree  orthogonal single- 

degree-of-freedom inert ia l  reference gyros.  By arranging m o r e  than 

t w e e  such gyros in a three-dimensional a r r a y ,  a cer tain degree of 

s~ipplementary redundancy among the sensor s  is obtained. This  example 

is a s imple illustration of the m o r e  efficient u se  of hardware afforded by 

supplementary redundancy a s  opposed to standby redundancy. If a 

single redundant gyro w e r e  added to  a s e t  of th ree  orthogonal gyros t o  b e  

used purely a s  a replacement,  it would be  mounted with its input axis 

eolinear with that of one of the f i r s t  t h ree  gyros. It could then s e r v e  a s  

a backup to that gyro only. But if it were  mounted s o  that i ts  input axis  

had a nonzero projection on a l l  t h ree  input axis fo r  the f i r s t  gyros,  then 



it would be  supplementary to  a l l  th ree  and complete information would 

b e  retained if any one of the gyros failed. However, the required data 

processing i s  more  complex than in the standby case .  Gilmore [ 8 1 
has investigated such redundant gyro a r r a y s .  Another example of 

redundant like-component a r r a y s  can be  found in multi- jet reaction 

control sys tems.  Crawford [ 6 3 has  considered the design and 

implementation of redundant reaction jet a r r a y s  in spacecraf t  control 

sys tems.  

The use of supplementary components requi res  m o r e  re-.  

s t ructur ing capability than standby redundancy, because when a compo- 

nent fai ls  the sys tem must reorganize itself to function with few2r 

active components. Having been provided with an expanded capacity 

f o r  reorganization, a sys tem then has a potential for  dealing with other 

changes in the system o r  in the environment. Some changes might be 

s imi l a r  to  a fai lure  in that a component becomes unusable; for  instance, 

the target  of a s t a r  t r acke r  being occulted by another body. Other 

changes, such a s  in dynamic behavior, a r e  m o r e  subtle. 

In order  to  administer the m o r e  sophisticated restructur ing 

schemes,  grea ter  logical and computational capacities a r e  required.  

These grea ter  capacities have become feasible with the rapidly growing 

capabilities of special  purpose computers.  This growth has stimulated 

an increasing interest  in various on-line restructur ing schemes ,  

exemplified by "adaptive", "self-organizing1', and "self -optimiz ing" 

sys tems.  It is difficult to  make sha rp  distinctions among these  t e r m s ,  

s o  a definitive categorization will  not b e  attempted here.  All  t h l  t e r m s  

suggest a certain restructur ing capability, and therefore such s.ystems 



may exhibit some of the character is t ics  which have been used to 

descr ibe self-reorganizing behavior. The approaches t o  restructur ing 

used i n  these sys tems frequently bea r  on some  of the s a m e  kinds of 

problems encountered in self-reorganization. Chapter 3 discusses  

some of the fundamental concepts on which many of the restructur ing 

methods a r e  based. 

1 . 2  - General Problem Description 

The basic  sys t em considered in this r e sea rch  is a l inear plant 

wi th  feedback. Control forces  a r e  applied by effectors which a r e  

subject Lo fai lure .  The outputs of the plant a r e  measured by s e n s o r s  

which a r e  a l so  subject t o  failure.  The linear dynamics a r e  assumed to 

be either piecewise t ime- invariant o r  slowly time-varying. A com- 

p leteky rel iable  data processing capability is presumed. The problem 

is to maintain satisfactory closed- loop performance in spi te  of fai lures  

in the effectors and sensor s  and changes in the linear dynamics. Satis-  

factory performance means a t  least  closed-loop stability. Some 

additional propert ies  of the closed-loop dynamic behavior a r e  a l so  

considered in situations where t ime  is available fo r  more  extensive 

cornputat ion. 

The sensor s  and effectors a r e  assumed to b e  supplementary, s o  

there a r e  no s p a r e  components (although some of the r e su l t s  on fai lure  

detection can b e  used with standby redundancy). In c a s e  of fai lure ,  the 

system i s  expected to  function with a reduced number of effectors o r  

sensors. Chapter 2 introduces some concepts for  describing m o r e  

specif ' i~al~ly the idea of supplementation a s  applied to  sensor s  and 

effectors for  a l inear plant. A quantitative measure  fo r  the degree of 



supplementation among these components is a l so  suggested.  

The remaining chapters  deal  with the problem of implenienting 

a self-reorganization scheme  assuming the bas ic  plant is given, 

Chapter 3,  in addition t o  discussing some  basic  approaches t o  reorgaa i -  

zation, p resen ts  a detailed formulation of the problem, descr ibes  the  

method of approach used in th i s  r e sea rch ,  and introduces the  s1dbject 

ma t t e r  of the remaining chapters .  



CHAPTER 2 

COMPONENT SUPPLEMENTATION 

2 . 1  General  Discussion 

The concept of supplementary redundancy was discussed in 

Chapter 1. Supplementary components were  described in a general  

way  a s  those which per form overlapping functions s o  that when one 

component fai ls  i ts  function can b e  taken over by others .  Before one 

can  proceed to  construct sys tems with supplementary components, it 

1s necessary to have m o r e  specific definitions of the propert ies  of 

suppierr entation. This chapter investigates the supplementary 

propert ;  e s  of effectors and sensor s  fo r  a l inear time-invariant sys tem.  

To discuss  supplementation one must  f i r s t  define the functions 

of the various components. Effectors a r e  control devices, s o  i t  is 

natural to define their  function in t e r m s  of controllability. Sensors  

a r e  messur ing  devices, s o  it is  likewise natural  to define their  function 

in term:; of observability . Fortunately controllability and observa- 

biliiy a r e  already well-established concepts in the theory of linear 

systems. Sections 2 . 2  and 2 . 3  apply these concepts to  individual 

effectors and sensor s .  They i l lustrate  how the function of an effector, 

for example, can be  defined in t e r m s  of that portion of the s ta te  space  

which the effector can control. A s imi lar  definition can b e  applied to  a 

sensor. The remaining sections in the chapter use  these r e su l t s  t o  

develop s e v e r a l  ways of defining m o r e  specifically the idea of supple- 



mentation a s  applied to  effectors and sensor s .  Attention is given to  

the problem of how to measure  degrees of supplementation among 

components. Such ideas provide a measure  of the potential ability of 

a sys tem to  cope with fai lures  of i ts  effectors and sensor s .  

2 . 2  Pa r t i a l  Controllability 

In this section some resu l t s  concerning the concept of 

controllability a r e  reviewed. The p r imary  purpose is to i l lustrate 

how these resu l t s  can b e  used to  descr ibe the control function of each 

individual effector.  The ideas presented h e r e  will  be  used in the later 

sections of this chapter and also in Chapters 4 and 6 in a different 

context. 

Consider the linear time-invariant sys tem described by 

where x(t) is an n-dimensional s ta te  vector,  u(t) is an r-dimensional 

control vector,  and y(t) is an m-dimensional sensor  output vector.  The 

matr ices  A ,  B, and C a r e  of dimension n X n, n X r ,  and m :< n 

respectively.  Employing the definition used by Athans and Falb [ 1 3 , 

a s ta te  xo is defined to  b e  controllable at t ime to if the s ta te  of the 

sys tem can be  driven f rom x(to) = xo to  the origin in a finite t ime 

interval by some control u(t). Athans and Falb show that for  the 

sys tem described by (2-1) the se t  of controllable s ta tes  is a subspace 

of the s ta te  space,  R". Moreover, this  subspace is spanned by the 

columns (considered a s  vectors  in R") of the mat r ix  



w = [B, A B ,  . . . , B 1 

or equivalently, the controllable subspace is the range space of W. 

Hereafter the range space  of W will  b e  r e fe r red  to  a s  the controllable 

space  of B (with respec t  to  A ) .  Since by definition a s ta te  t ra jec tory  

joins every s ta te  in the controllable space  with the origin, this space 

can also b e  viewed a s  that portion of the s t a t e  space which i s  reachable 

by s o m e  control u(t) s tar t ing f r o m  the origin. The mat r ix  W has 

drmension n X ( n - r ) ,  s o  the number of independent columns in W, and 

thus the rank of W,  can be  no grea ter  than n. If the rank of W is  n, 

t he  sys tem given by (2-1)  i s  said to b e  controllable and (A, B )  is  a 

controllable pair .  If the rank of W is l e s s  than n, the sys tem is only 

par t ia l ly  controllable. 

Each component of the control vector in (2-1)  is  considered to  

be  the  cc)n.trol force  applied by one effector. To clear ly indicate the 

act ion of each of the r effectors (2-1)  can b e  written a s  

w q e r e  ui(t)  is the ith component of u(t) and bi is the  ith column of B 

Kh'o~ suppose the sys tem is being controlled by only one effector, say 

the ith el'fector. Then the s ta te  equation i s  



The statements concerning the controllability of (2-1) with the f ~ k l  

control vector can be  applied to  (2-7) a s  wel l  by simply replacing B 

wi thb i .  Define 

The range space  of Wi is that par t  of the s ta te  space which is control- 

lable by the ith effector. This means that acting alone the ith effector 

can drive any s ta te  in the range space of Wi t o  the origin, o r  can reach  

any s ta te  in that space s tar t ing f rom the origin. The range space of 

Wi is  the controllable space of bi. 

The mat r ix  Wi has seve ra l  important propert ies  which a r e  due 

to  the manner in which the columns of Wi a r e  generated. If the rank  

of Wi i s  k, then the f i r s t  k columns of Wi (from the left) a r e  

independent and f o r m  a bas is  for the range space of W.. 1 This s 

verified by noting that if any column of Wi i s  linearly dependent on the 

previous columns, s ay  

(where the abi j  a r e  sca la r s )  then by premultiplying (2-9) repeatedly 

by A it can b e  shown that Ajbi for any j 2 k i s  a lso dependent on the 

f i r s t  k columns, { b. . . . , A b It can a lso  be  shown frorn (2-9) 
1' 

that the range space  of Wi is an invariant subspace with respect  to  A .  

A subspace is invariant with respect  to  A if f o r  any vector x i n  that 



subspace, Ax i s  a lso in the subspace. A subspace which has a se t  of 

basis ve2tor-s of the fo rm {bi, Abi, . . . , Ak-I bi ) i s  called a cyclic 

sxbspace because of the cyclic manner in which the bas is  i s  generated 

f-om bi. The vector bi is called the generator of the subspace. A 

cyclic subspace is  always invariant. The concept of cyclic subspaces 

and  theis- generators  play an important ro l e  in the study of the s t ruc ture  

OP linear spaces and canonical mat r ix  fo rms .  A complete development 

of the resu l t s  stated above can be found in Gantrnacher [ 71 . Since 

t?r first k columns of Wi fo rm a bas i s  for its range space, it follows 

that  the range space  of [bi ,  Abi, . . . , Ak-I bi ] is equivalent to  that of 

4'; and  
I' 

The s e t  of a l l  vectors  orthogonal to  the range space  of Wi (more  

precisely, orthogonal to  every vector in the range space  of Wi) a l so  

T fo rms  a subspace. This subspace is the null space of Wi . If x i s  any 

vector in  this  subspace, then 

Tke null space of WT will  be %-:erred to  a s  thf uncontrollable space  of 

b , Thir; terminology i s  motivated by the following observation. Con- 
L 

sEder a linear sca la r  function of the s ta te  variable given by 

where  h is a t ime-invariant n-vector. If h l ies in the uncontrollable 

space of b then the action of the ith effector can have no effect on the 
1' 



dynamic behavior of vh(t). 

The general solution of (2-7)  is 
t 

where @ t ,  to) is the transition matr ix defined by 

(I is the identity matr ix . )  Since A is time-invariant, (t, to) can  be 

replaced by the matr ix exponential 

Using this  s e r i e s  expansion for (t, 7 )  the integral on the rig?rh"h:band 

side of (2 -1  3) becomes 

j The vectors A bi  for  a l l  j a r e  in the range space of Wi s o  (2-17)  can 

be  expressed a s  



winere g(t) is some n-vector which depends on ui(t) ( g(t) is not 

~nique If r k  Wi < n). Using (2-18), (2-13) becomes 

T T :If h is in  the null space of WT then Wi h = 0 o r  h Wi = 0, and (2-20) i - - 

Clearly u.(t)  has  no effect on vh(t). In this  sense  the quantity vh(t) 
1 

is uncontrollable with respec t  t o  the ith effector . These observations 

concerning the controllable and uncontrollable spaces of bi descr ibe 

t i e  capabilities and limitations of individual effectors . They w il l  be  

used in Section 2.4 to  determine the influence of effector fai lures  on 

system control capabilities and to  define m o r e  precisely the idea of 

complementary effectors. 

2 - 3  Par t ia l  Observability 

'The resu l t s  on observability presented in this  section a r e  

pr imari ly  intended to  s e r v e  a s  a bas is  for  evaluating the capabilities 

01 sensor s  and the effect of their  fa i lures  on overall  sys t em capa- 

bilities. Some of the resu l t s  will  be  used extensively in Chapter 4 

a s  w e l l .  

'The sys tem given by (2-1) and (2-2) is said to be  observable if 

given y(t) and u(t) over some t ime  interval [ to ,  tl  ] it is  possible to  



determi.ne uniquely the s tar t ing s ta te  x(t ). Substituting the general. 
0 

solution for  x(tl) into (2-2)  yields 

To determine x(to) it must  be  possible to solve the equation 

where 

yo(t,) = y(tl)  - C (tl ,  T )  B u ( r )  d r 

is a known quantity. Brockett [ 4 ] proves that for  a l inear t ime- 

invariant sys tem x(to) can be  determined to  within an additive constant 

which lies in the null space of the mat r ix  

o r  equivalently, the null space of 



The system i s  observable then if and only if the ( m - n )  x n mat r ix  M 

h a s  no r ~ u l l  space.  This is t r u e  if and only if r k  M = n. If r k  M < n 

*: 79 sys tem is only partially observable. 

'The range space of MT will  be r e f e r r e d  to a s  the observable 

space  01' C .  This subspace of the s ta te  space determines the ability 

of the s e n s o r s  to  observe a sca la r  l inear function of the s ta te  variables.  

Consider  the sca la r  

Given y(t) and u(t) over a t ime  interval [ to, tl 1 ,  x(to) can be deter-  

r i m e d  to within an additive constant in the null space  of M. Then x(to) 

can  be expressed a s  

where x i s  a particular solution of (2-23), and z is some  unknown 
P 

vector such that 

Snbstitu-Ling (2-27) into (2-26) gives 

T Now hT x i s  known, but h z is ,  in general,  unknown because z is  
P 

unknown. Therefore vh(to) cannot b e  determined unless it is known 

T w i t h  certainty that h z = 0. This will  be  the case  if and only if h i s  - 
orLhogorlal t o  every vector in the null space of M, o r  equivalently, if h 

T lies i n  the range space  of NI . 



It will  become c lear  in later chapters that in a reorganization 

scheme sensor  outputs a r e  used not only to determine the s tate  of a 

sys tem,  but also to provide information about fai lures  and changes 

which may have occurred.  One par t  of the reorganization problem is 

to detect changes in the dynamics of the sys tem described by (2-I), 

e .g . ,  changes in A o r  B.  The null space of M plays an important part  

in determining the ability of the sensors  to furnish information about 

such changes. This interpretation of the null space of M will  be  demon- 

s t rated af ter  some basic  resu l t s  a r e  established. 

By reasoning s imi lar  to that used in Section 2 . 2  it can be shown 

that if r k  M = q < n the mat r ix  can b e  truncated af te r  ( m - q )  rows 

without a l ter ing the null space. That i s ,  

and the null space of the truncated mat r ix  i s  the same a s  the null space 

of M. F r o m  this fact it is  easily established that the null space of M 

is an invariant subspace with respect  t o  A .  Suppose x i s  in  tlie null  

space of M. Then 



since al l  the rows of the mat r ix  on the right a r e  included in M ( reca l l  

q < n) . If Ax is in the null space of the truncated matr ix,  it i s  a lso in 

the  null space  of M. Therefore the null space  is invariant with respec t  

to A .  A, subspace which is  invariant with respect  to  A is a lso  invariant 

wi th  respec t  t o  @ (t, to) for  any t and to. This  follows f rom the s e r i e s  

expansion for  (t,  to) given by (2-16). 

i i n  invariant subspace with respec t  t o  (t, to) is associated 

wi th  vv~hsit wil l  be  called a free- t rajectory subsystem. A f r e e  

trajeclo:ry is a homogeneous (undriven) solution of (2-1) and is given by 

From this  equation it is c lear  that if x(t ) is in an invariant subspace 
0 

w i t h  respec t  to  (t, to), then the f r e e  t ra jec tory  x(t) remains  in that 

subspace for  a l l  t .  Because the t ra jec tory  never leaves the subspace, 

it can be completely described by a reduced s ta te  vector whose dimen- 

sion is  the dimension of the subspace. Suppose the subspace has 

dimension P and the se t  of vectors  {wI . . . , wU] is a bas is  fo r  i t .  

Any x(t) in the subspace can be  uniquely expressed a s  

f 3r some sca la r  t ime functions {ol(t), . . . , oQ (t)) . On the other hand, 

this  s e t  of o.(t) uniquely determines x(t). The P -vector 
1 



therefore  uniquely determines the t rajectory x(t) and can b e  considered 

the s ta te  vector of a subsystem of the original system. The undriven 

dynamic behavior of this subsystem corresponds to  the dynamic 

behavior of a portion of the complete sys t em given by (2 - 1). 

The null space of M ~ ,  being invariant with respect  to  (t, to), 

can be associated with a f ree- t rajectory subsystem. This subsj~stern 

i s  unobservable in seve ra l  senses .  F i r s t ,  fo r  any t rajectory in the 

null space  of M 

s o  y(t)  provides no information about the s t a t e  of the associated sub- 

system. Moreover, s ince the dynamic behavior of this sys tem produces 

no effect on the output y(t), it is clear  that any scheme to identify the 

dynamics of the sys tem f r o m  y(t)  can never produce any inforrr-ation 

'I? about that portion of the dynamics associated with the null space of M 

In light of these observations the null space of M~ will  be  r e fe r red  to 

a s  the unobservable space of C.  

These resu l t s  a r e  concerned with the capabilities of the com- 

plete se t  of m sensor s  modeled by (2-2) .  The s a m e  developments earl 

b e  applied to  each row of C to  determine the capabilities of each indi- 

vidual sensor .  

2.4 I,nvulnerabilitg to  Effector Fa i lures  

The mater ia l  in this  section is an attempt to  provide some 

answers  to  the question of how many effector failures can b e  tolerated 

before a sys tem becomes unable to  function. Such a question is  s f  



interest  because one would like to  b e  able to design a self-reorganizing 

sys tem s o  that it can cope with the largest possible number of effector 

f a i lu res*  There  is  no unique answer to  this  question because the re  a r e  

different ways of defining the stage a t  which a sys tem becomes "unable 

t o  function". In this  section the concept of controllability will  b e  used 

to  define s tages  of fai lure .  

2.4.1 Mi.nimum Number of Effectors fo r  Controllability 

Co.nsider the sys tem described by (2-1). As  i.n 

Scr.ction 2 . 2 ,  each component of the control vector will  b e  considered 

the output of one effector. Each effector is associated with the 

correspcnding column of B. The question to  be answered h e r e  is, 

wha t  is the minimum number of effectors necessary to  completely 

control t he  system? Or  in other words,  what is  the smal les t  value of 

r for which the re  exists an n X r mat r ix  B such that (A, B) is a 

controllable pa i r?  

The answer t o  this  question can be  obtained f r o m  

results concerning the invariant polynomials of a square  matr ix .  

Extensive resu l t s  on invariant polynomials can b e  found in [ 7 1. Only 

those propert ies  necessary  for  present purposes will  be  presented 

here. Any n X n mat r ix  A has associated with it a unique s e t  of n 

invariant polynomials { il(s). . . . , in(s) } of o rde r s  kl , . . . , kn 

respectively.  The polynomials have the following properties:  

(1) They a r e  monic, i. e . ,  the coefficient of the 

highest power in s is unity. 

(2)  The product of a l l  the invariant polynomials 

of A yields the character is t ic  polynomial of A 



Since the character is t ic  polynomial of A is  of 

o rde r  n, it follows that 

(3) Each i .(s)  is evenly divisible by ij+l(s). This 
J 

implies 

Normal ly  the polynomials become t r iv ia l  (equal to  1) at some point in  

the sequence. A typical s e t  might look like 

where the a .. a r e  sca la r s .  F o r  this  s e t  kQ = kl +2  - - ... = kn = 0 
1 1J 



and 

It \will not be  proven here ,  but the only mat r ices  which have a l l  non- 

t r rvial  invariant polynomials a r e  of the f o r m  01, where o i s  a sca la r  

and  T is the identity matr ix .  

The answer to  the question posed a t  the beginning of the 

sect ion is  obtained by cou.nting the .number of nontrivial polynomials. 

Specifically, the minimum number of effectors necessary to  make (2-1) 

a controllable sys t em is equal to the number of nontrivial invariant 

polkynolr~ials of A. To s e e  why this  is t r u e  it is necessary  to  investigate 

the way in which the invariant polynomials a r e  obtained. The f i r s t  

polynomial il(s) is  the minimal polynomial for the ent i re  s ta te  space.  

This rnctans that for  any vector x in the s ta te  space 

kl kl-1 il(A)x = A + "Ilk,  A x +  ... + x = - 0 

rn 1 - " s i s ,  in fact,  implies i, (A) = 0. Equation (2-40) can be solved fo r  - 
I 

kl-1 
-4'' x i n  t e r m s  of the vectors  {x, Ax, . . . . A x) .  This implies 

for any x. Replacing x in this  expression by the vector bi associated 

w i t h a n y  effector shows that the controllable space of any effector 

cannot ?lave dimension l a rge r  than k l .  In other words,  the largest  

possible subspace which is  controllable by a single effector can have 



dimension no la rger  than kl . It can be shown that there always exists 

a vector for which the equality in (2-41) holds. By taking bi equal t o  

that vector, the ith effector will have a controllable space of di:nension 

k l .  Denote such a subspace by E l .  F r o m  Section 2.2 it is known that 
- 

the vectors {bi, Abi, . . . , Ak' l b i )  fo rm a basis  for E l .  

The second polynomial i2(s) i s  the minimal polynomial 

for  the s tate  space modulo El .  That i s ,  for any vector x in t h e  s tate  

space 

k2 where z is some vector in E, . This equation can be solved for A x 
I 

kZ1 
in t e r m s  of the vectors {x, Ax, . . . , A x) and z .  But z can be 

kl-1 
expressed in t e r m s  of the bas is  vectors {bi, Abi, . . ., A b i  

f o r  E l .  Therefore Ak2 x can be expressed a s  a l inear combiration 
k2- 1 kl- 1 

of the vectors {x, Ax, . . . , A x, bi, Abi, . . ., A b } .  This 

together with (2-41) implies 

n- 1 r k  [ x ,  Ax, . . . , A x, bi, Abi, . . . , bi 1 
k2- l kl-  i 

= r k [ x ,  Ax, ..., A x, bi, Abi, . . ., A bi] 

for  any x. Replacing x by the vector b.  associated with any slxond 
J 

effector and reordering the columns in (2-43) yields 



This construction demonstrates that the largest  possible subspace 

ivh ich  is controllable by two effectors can have dimension no l a rge r  

"ha-, (k. + k ). Again it can b e  shown it is  possible to  find a b .  for  2 J 

-rrrrich equality holds in (2-44). The same  reasoning can b e  applied to  

i3(s)  a r d  s o  on. In general,  the largest  possible subspace which is 

c o ~ t r o l l a b l e  by r effectors has dimension k * . * k The ent i re  

state space (and the system) i s  controllable by r effectors if and only if 

Cornpar ing this  with (2- 3 5 )  one can conclude that the minimum value of 

- fcr which 12-41) is satisfied is 

Gantmacber [ 7 1 discusses  seve ra l  methods for  generating the 

;nvarharrtpolynomials f r o m  which rmin can b e  determined. One 

~r;aer;hod i s  t o  reduce the character is t ic  mat r ix  (Is - A) t o  a diagonal 

matr ix  B)y elementary row and column operations. Then the invariant 

po;.lyn~rriabs of A appear a s  the diagonal elements.  

A minimal  se t  of vectors  { b l ,  . . . , br ) capable of min 
ecntrolling the entire s ta te  space is  by no means unique -- in fact ,  

ti-sere is an infinity of such se t s .  No systematic  procedure for  deter-  

miclng a l l  possible minimal s e t s  is presented here .  However, one 

uiay of selecting a t  least  one minimal  s e t  is to  t ransform A t o  one of 

t h e  block diagonal standard fo rms  derived by Gantmacher. When this  

is done it is possible to  select  a minimal se t  of bi by inspection. 



2.4 .2  Supplementary Effectors 

The previous section dealt with the question of control- 

ability of the complete system given by (2-1) .  In this section attention 

will  b e  focused on the ability to  control a sca la r  l inear function ~f the 

state ,  a s  given by 

A subset of j effectors associated with the vectors { b i  , . . . , bi } 
I j 

will  be  considered supplementary with respect  t o  control of the scalar 

vh(t) if they a r e  each alone capable of controlling vh(t). Applying the 

resu l t s  of Section 2 . 2 ,  it can be seen  that the ith effector is  capable of 

controlling vh(t) if and only if 

where  Wi i s  defined by (2-8). The subset of vectors  { bi , . . . , hi 
1 5 

(from the full s e t  {by . . . , b,)) which satisfy (2-48) corresponds to  

the subset of effectors which a r e  supplementary with respect  t o  control 

of vh(t) The number of effectors in this  subset is a measure  of the 

invulnerability of the quantity vh(t) t o  effector fai lures .  vh(t) will  be 

controllable a s  long a s  any one of the effectors in the above subset is 

functioning. Therefore at  least  j effector fai lures  (specifically, 

fa i lure  of a l l  effectors in the supplementary subset) a r e  necessary  

before vh(t) becomes uncontrollable. One can a lso  associate  this  

degree of invulnerability with the vector h. When investigating the 

invulnerability of a par t icular  h, a m o r e  convenient relation which is 

equivalent to  (2-48) is  



w h e r e  

(Mote that Wi can be  truncated af ter  the kth column, where k = r k  Wi. 

th  Sirnilarljr, Mh can b e  truncated af ter  the 1 row, where 1 = r k  Mh. ) 

An invulnerability degree ca.n b e  associated with every 

d i ~ e c t i o n  in the s ta te  space. The direction with the least  degree of 

in-sulnerability is in a sense  the "weakest link'' of the sys tem with 

r e g a r d  to controllability. This least  degree of invulnerability is this  

minimurr. number of effector fai lures  necessary fo r  the sys tem to  

become riot controllable. 

2 5 Bavuherabilitv t o  Sensor Fa i lures  

The mater ia l  in this section is  analogous t o  the observations 

made i n  Section 2 .4  concerning effector fa i lures .  The purpose is  to 

provide some answers  to the question of how many sensor  fai lures  a 

system can to lera te  and s t i l l  continue to function. Again the answer 

depends  on how one chooses to define the point a t  which a sys t em is 

unable to  function. Observability cr i ter ion will be used fo r  this purpose 

in the  following sections.  



2.5.1 Minimum Number of Sensors  fo r  Observability 

The resu l t s  of this section a r e  most easily develcped by 

re fer r ing  to  Section 2.4.1 and recognizing the duality relationship 

between observability and controllability. Let ci  be  the ith row of C. 

The unobservable space of ci with respect  t o  A coincides with the 

uncontrollable space of cT with respect  t o  A ~ .  Similarly, the 

observable space of c i  with respect  to A coincides with the coatroll.able 

T T space of ci with respect  t o  A . The invariant polynomials of A and A T 

a r e  identical [ 7 1. Therefore t h e ~ s u l t s  of Section 2 .4 .1  show that the  

T largest  subspace which is  controllable (with respect  t o  A ) by rn 

effectors has  a dimension (k + . . . + k m )  It follows by duality that 1 

the largest  subspace which is  observable (with respect  t o  A )  bjr m 

sensor s  has dimension (k + . . . + km) F o r  a sys tem matr ix  P with  1 

invariant polynomials (2 - 38) ,  the minimum number of sensor s  

necessary for  observability i s  mmin = 1 . The minimum number of 

sensor s  for observability is  equal to  the minimum number of effectors 

for  controllability. 

2.5.2 Supplementary Sensors  

This section presents  two viewpoints of supplementation 

among sensor s .  The f i r s t  is based on the ability to  observe a sca la r  

l inear function of the s tate .  The second i s  based on the ability to 

provide information about the subsystem dynamics. 

Consider the sys t em (2-1) with sensor  outputs given by 

(2-2). Each component of the output vector y(t) will  be  considered the 

output of one sensor .  The ith sensor  i s  associated with c the ith i' 



row of C. The observations of Section 2 .3  can be  applied to  each ci. 

.th The s c a l a r  function vh(to) given by (2-26) i s  observable by the 1 

T sensor if and only if h l ies  in the range space of Mi , where 

If rk Mi = qi, then t h e r e  a r e  n - qi independent solutions of the 

equation 

Let ( z i l .  . . . ,  z i, n-q ) be  a se t  of such independent s0 lu t io .n~.  These  
i 

vectors  f o r m  a bas is  for  the null space of Mi. Now h i s  in the range 

space of MT if and only if it is  orthogonal to every vector in the null 

T space of Mi. This  wil l  b e  the case  if h zip = O for  1 = 1, . . . , n-qi , 

where  

By forming the subset { ci , . . . , c.  } of a l l  rows of C for  which (2-53) 
1 1i 
I J 

is satisfied, one obtains the se t  of sensor s  which a r e  supplementary 

with respec t  t o  the observation of vh(to) The number of sensor s  in 

this se t  i s  a measure  of the invulnerability of vh(to) with respec t  t o  



sensor  fai lures .  This invulnerability can be  associated with the vector 

h a s  well. As  in the case  of effector fa i lures ,  an (observation) 

invulnerability can be  associated with every direction in the s tate  space,  

The direction (or  directions) with the least  degree of invulnerability 

i s  the weakest par t  of the sys tem in t e r m s  of observability. This 

least  degree of observation invulnerability is  the minimum number of 

sensor  fai lures  necessary for  the sys tem to  become not observable,  

It is also possible to interpret invulnerability in t e r m s  

of determining subsystem dynamics. A s  indicated in Section 2 . 2 ,  an 

invariant subspace with respect  t o  A can be  associated with a f r ee -  

t ra jec tory  subsystem. Suppose the subsystem of interest  is  associated 

with a certain B -dimensional invariant subspace defined by the bas is  

vectors  {wI1, . . . , wI1} . Define the n X 1 matrix 

The invariant subspace is the range space  of X It can b e  shown that I '  

if rk(Mi XI) < 1 , then the ith sensor  can provide information about 

only a portion of the dynamics of the subsystem associated with the 

range space of XI. Assume 

Then the re  a r e  k independent solutions of the equation 

where /3 i s  an 1-vector.  Let {BI1, . . . , PIk} b e  a se t  of such I 



independent solutions. Define an n X k mat r ix  

Note that the range space  of ZI consists of a l l  vectors  which a r e  both 

in the nul l  space  of Mi and in the range space of XI. In other words,  

the range space of Z is the intersection of the null space  of Mi and I 

t h e  range space of X Since it is the intersection of two invariant I' 

subspaces, the ra.nge space of Z is itself an  invariant subspace. A I 

second f ree- t ra jec tory  subsystem can b e  associated with the range 

space  o-f Z It i s ,  in fact ,  a subsystem of the f i r s t  subsystem I '  

because the range space of ZI is contained in the range space of XI. 

The range space  of Z is also in the null space  of Mi, s o  one may I 

conclude f r o m  the resu l t s  of Section 2 . 2  that the output of the ith sensor  

can never yield any information about the dynamics of this  second sub- 

sys t em.  In this  sense ,  a portion of the dynamics of the f i r s t  subsystem 

t h is unobservable by the i sensor .  By counting the number of s e n s o r s  

for which rk(Mi Xi) = 1 one can obtain the degree of invulnerability to  

sensor  fa i lures  f o r  the subsystem associated with the range space of XI. 

2 . 6  Summary 

This chapter uses  the concepts of par t ia l  controllability and 

observability a s  the  bas i s  f o r  some c r i t e r i a  for  evaluating the ability of 

a sys t em to cope with effector and sensor  fai lures .  These c r i t e r i a  a r e  

offered a s  possible design goals for  the basic  sys tem in a self-reorga-  

nizing scheme.  However, they measure  only a potential ability. The 

actual  a.bility of a sys tem to withstand component fa i lures  and other 



changes depends a l so  on the effectiveness of the self-re0rga.nizir.g 

loops whose function i s  t o  make advantageous use of the supp1err.e.ntap.y 

features  built into the basic  sys tem.  These self-reorganizing loops 

a r e  the subject of the remaining chapters.  



CHAPTER 3 

SELF-REORGANIZATION 

3 . 1  General Principles 

This chapter outlines some general concepts concerning self- 

reorgariization schemes. Specific a reas  to which the major results of 

this research apply a r e  described in more  detail. The formulations 

of the problems considered and the methods of attack a r e  presented a s  

a n  introduction to the following chapters. 

Reorganization of a system is made necessary when a malfunction 

o r  change in the system or  in the environment causes an unacceptable 

deterio;?ation in the performance level. (Such an occurrence will be 

I !  referred to a s  simply an event".) The object of the reorganization o r  

restructuring is, of course, to res tore  the performance to an acceptable 

level. One is quickly led to the observation that any restructuring 

deeisiolz is based upon information about either the performance of the 

system o r  the event which has occurred. Without at least one of these 

two  typr3~ of information available, there is no logical basis for selecting 

a new structure. 

Information about the performance of a system might be obtained 

dzrectly from. sensor outputs or it may be obtainable only indirectly by 

inference from measurable quantities. For  example, accessible outputs 

of the system might be compared to a reference model. The most 

crsmmo n types of performance information a r e  performance level and 

performance gradient with respect t o  some structural parameters.  



Higher derivatives of the performance function a r e  usually too tliffieeakt 

t o  generate for  on-line use.  Knowing the performance and perf 3rrnanee 

gradient for  a cer tain sys tem s t ruc ture  amounts to  a local knowledge of 

a performance a s  a function of s t ruc ture .  Structure-changing algorithms 

based on such information will b e  local searching techniques. The local 

knowledge of the performance sur face  is used to  guide s m a l l  changes i n  

s t ruc ture  to  achieve higher performance levels. Many techniques for 

locally directed sea rches  have been developed in connection with 

maximizing (or  minimizing) a function of seve ra l  variables and ,more 

recently in connection with finding optimal controls for  dynamic sys tems.  

Many of the adaptive sys tems proposed in the l i te ra ture  over the past 

decade use performance information and locally directed searching 

techniques [ 1 2 , 1 3 ,  22,  251. 

Perhaps  the greatest  appeal of this approach to  reorganization is 

that it is not necessary  t o  make a detailed analysis of the relationships 

between performance and s t ruc ture .  The sea rch  process  takes the place 

of such analyses,  and therefore this  approach is most  useful in cases  

where accura te  analysis is difficult o r  impossible in the design s tage ,  

Moreover,  a substantial  amount of imperfect  know ledge about the bas ie 

sys tem can usually be  tolerated when only performance level information 

is required. A s  one would expect, a m o r e  complete knowledge of the 

sys tem charac ter i s t ics  is required to generate performance gradient 

information. If these  charac ter i s t ics  a r e  themselves subject t o  change, 

it may be  necessary to  identify them before rel iable  performance 

gradient information can b e  generated. Thus a reorganization scheme 

based on performance information may a lso  requi re  a cer tain amount 

of event information (about sys tem charac ter i s t ics )  a s  well. 

45 



Performance-direct ed searching methods have seve ra l  limita- 

tions. One limitation is that it is not always possible to  determine 

system performance. This is the c a s e  when a performance index is 

based on inaccessible quantities. F o r  instance, the performance index 

of a n  iner t ia l  navigation sys tem might be the e r r o r  magnitude between 

zs-timated and t r u e  position. Since t r u e  position is not known, the 

performance cannot be  determined on- line. 

In other cases  it may be  possible to  define a performance 

ineasure that is accessible,  but which in pract ice becomes unsatis-  

factory because it is influenced too much by  inaccessible effects. This 

may happen, f o r  example, when comparison with a reference model 

is taker, a s  a performance measure  for  a plant subject t o  unknown 

disturbances.  If t he re  a r e  significant disturbances acting on the plant 

but not on the model, the performance measure  may  b e  too sensit ive to  

these  disturbances t o  be  useful fo r  reorganization. 

Per formance  information measured on-line indicates present  o r  

past performance, whereas the information is used to  determine 

s t ruc tu ra l  changes which affect only future performance (because of 

delays in the  restructur ing process  and in the sys tem itself) .  This is 

not a ser ious  problem provided the performance surface (performance 

a s  a f u ~ c t i o n  of s t ruc ture)  remains  relatively s table  in t ime.  However, 

if the performance m e a s u r e  is significantly influenced by time-varying 

effects ~ t h e r  than the res t ruc tur ing  process ,  then the performance 

surface may b e  al tered too rapidly f o r  the reorganization process  to  

fol low. The resulting performance can be  poorer  than if no reorganiza-  

t i on  were  attempted. 



A nother limitation of performance-direct ed reorganization is  

concerned with the speed of the reorganization process  and related 

questions of stability. Gradient information usually produces consider- 

ably f a s t e r  convergence in the sea rch  process .  However, additional 

delays associated with the use of gradient information can b e  sub- 

stantia 1. The s t ruc tura l  reorganization must  proceed slowly enough to 

allow the changes to  be properly reflected in the  gradient information, 

otherwise the  gradient information will  be  invalid. This usually means 

the adjustments must  be made slowly with respect  t o  the d y n a m ~ c  

response of the bas ic  sys tem.  Because of this ,  excessive searching 

t imes  may resul t  when major  events occur which requi re  la rge  

s t ruc tu ra l  changes. In the meantime ser ious  stability problems can 

a r i se .  In these situations it would appear  to  be advantageous to  t r y  to  

make la rge  changes initially which put the sys tem s t ruc ture  a t  least  i n  

the general  a r e a  of the ideal one. This leads to  the concept of reorgani- 

zation based upon event information. 

The second bas ic  approach to  reorganization is to  attempt to  

determine what event has occurred and to select  a new s t ruc ture  to  

compensate for  it. This approach can b e  viewed in two steps: 

(1) Process ing  the raw data f rom the sys tem to  obtain 

information about the event which may have 

occurred.  

( 2  Using the event i.nformation to  select  a new 

s t ruc ture .  



The  techniques used to  accomplish the second s tep will  depend on the 

type of event information which i s  generated in the f i r s t  step.  

A s  noted in Chapter 1 with the example of p r e s s u r e  loss  in a 

hydraulic sys tem,  some events can b e  identified immediately by s imple 

sensory information. Another source  of event information is  comparison 

of redundant data. F o r  example, a substantial  discrepancy among the 

cutputs of s e v e r a l  duplicate sensor s  might indicate that one (or  more )  is 

defective. A "majority rule"  decision can b e  made if t he re  is sufficient 

redundancy (e.  g., if two out of th ree  sensor s  agree) .  In the a r e a  of 

digital logic design considerable attention has been devoted to  the 

problerr of detecting e r r o r s  in redundant data [ 10,11,18,24].  If 

discrepancies can be  t raced  back to a particular component, this would 

be a n  indication of malfunction. 

When redundant data is not available, comparison with data f r o m  

a rel iable  model  might b e  used t o  detect discrepancies.  In many cases  

the o u t p ~ t s  o r  inputs of individual components a r e  not accessible.  This  

makes  the localization of a fai lure  o r  change a m o r e  difficult problem 

than sirrpne comparison (unless, a s  suggested in Chapter 1, components 

a r e  g r o ~ p e d  into easily diagnosable units). Inferences must  be  made  

from observable effects on other pa r t s  of the sys tem.  Model comparison 

is often used in the identification of dynamic sys tems f rom input and 

output data. Identification of dynamic sys tems has received substantial  

attention in connection with adaptive schemes,  a s  mentioned ear l ie r ,  

and a l so  in the off-line design of process  control. One technique which 

h3s been employed extensively f o r  this  purpose is the use  of an adaptive 

rngdell [ b2,14,16,17,27].  P a r a m e t e r s  of the  model a r e  adjusted to  



minimize some measure  of the difference between the sys tem and 

the model. 

If the event information identifies a specific event, then 

determining a new s t ruc ture  is a mat te r  of establishing a connection 

o r  association between the appropriate s t ruc ture  and the event. The 

associat ion between event and s t ruc ture  could be  a direct assoc:iation 

o r  a logical one. The use  of standby redundancy and replacement 

reorganization described in Chapter 1 is a s imple example of dl recit 

association. Fa i lure  of a component is associated directly with the 

new s t ruc ture  -- replacement of the failed component by a s p a r e ,  

Direct association can a lso  be used with supplementary redundancy. 

One example is simply a table listing a l l  events and the i r  associated 

s t ruc tures .  Or a direct  association could consist of a fixed functional 

relationship between event pa ramete r s  and s t ruc tura l  parameters .  A 

logical association would establish a connection between event and  

s t ruc tu re  on-line through the use of logical algorithms. Such an 

algorithm might be  a kind of quick redesign process  shortened by prior. 

analysis of the basic propert ies  of the general  type of sys tem.  Direct 

association would b e  f a s t e r  but l e s s  flexible than logical association. 

The event information could be  in the f o r m  of a se t  of propert ies  

o r  features  which categorize events. Of course,  if the features  a r e  

sufficient to  identify a specific event, then the  restructur ing process  

could be  the s a m e  a s  described above. Instead of attempting t o  identify 

a specific event, a n  alternative approach would be  to  associate  each 

event feature with some appropriate property o r  feature which the new 

s t ruc ture  should possess .  These  associations between event fea tures  



a n d  s t ruc tura l  features  could b e  established a s  described previously. 

They might a l so  be  established by a learning process .  Such a learning 

process  would amount to  discovering high correlations between 

part icular  event features  and s t ruc tu ra l  fea tures .  To achieve learning, 

some feedback must  be available which would indicate whether the r e -  

s t ructur ing has been successful  o r  unsuccessful. If a training period 

1s provided, this  information would b e  supplied by the t r a ine r  o r  teacher .  

For on-  line learning reinforcement some kind of performance informa- 

Lian would b e  necessary.  

Another approach t o  reorganization based on event information 

is to formulate the problem in a s ta t is t ical  framework. Events can b e  

-nodeled a s  s ta t is t ical  events. Then the whole theory of hypothesis 

testing can b e  brought to  bea r  on the problem of event idenfication. 

Once a decision is made about the occurrence of an event the res t ruc tur -  

ing process  can proceed a s  previously described. Or in some cases ,  

instead of making a yes  o r  no decision about the occurrence of an event, 

a probability of occurrence conditioned on available information can b e  

used a s  a bas is  for  restructur ing.  A new s t ruc ture  could b e  selected 

to maximize the expected performance o r  minimize an expected r i sk .  

F a r  example, the confidence in a sensor  (i. e. , the weight placed on i t s  

measurement  in a r r iv ing  a t  a s ta t is t ical  estimate) could be  based on the  

probability that it has  failed. The s tat is t ical  viewpoint has been taken 

by Rockwell [ 2 1 ]  in obtaining a s t a t e  est imate of a sys tem in the face  of 

possible sensor  malfunctions. 

Am aid t o  event identification which has  not been oo nsidered he re  

is the possibility of performing t e s t s  o r  experiments on a sys tem o r  i ts  

components. Fault-detection experiments a r e  of considerable interest  
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in digital logic design [ 9 ,  10,  111 . The identification of finite-state 

sequential machines i s  often based on the construction of tes t  irzput 

sequences which take the machine through a l l  i ts  transit ions [ 3,111. 

A wide-band input is often used a s  an aid to  identification of a continuous 

dynamic system. F o r  purposes of self-reorganization one is norrnaBBy 

concerned with the problem of identifying fai lures  and changes 7 ~ h i l e  the 

sys tem is functioning. This usually precludes the use  of any extensive 

t e s t s  o r  experiments because tes t  inputs tend to  disturb the normal  

operation of the system. This is not necessar i ly  always the case ,  

however. Sometimes it is possible to  apply low-power t e s t  signals 

which do not adversely affect operational performance. Or ,  during 

intermittent periods of idleness a component might be isolated and 

tested. 

In the preceding discussion grea ter  attention has been devoted 

to  passive event identification because it is m o r e  widely applicable to 

on-line use.  Moreover, techniques designed for  passive event identifi- 

cation can b e  used in active testing a s  well. The information provided 

by a passive event identification scheme is often enhanced when 

judiciously chosen t e s t  inputs can b e  applied to  the system. 

One advantage offered by reorganization based on event informa- 

tion is the possibility of guiding large discontinuous s t ruc tura l  changes 

in a system. In this way it is possible to  achieve quickly a sysliern 

s t ruc ture  which is relatively close to  the ideal one. Implementing this 

sub-ideal s t ruc ture  will  hopefully achieve a sufficiently high temporary  

1 1  performance level to allow additional t ime f o r  making sma l l e r  fine 

tuning" adjustments in the s t ruc ture .  A second advantage of being able 

to  make large s t ruc tura l  changes is that it is possible to  jump over 
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a r e a s  ol' unstable s t ruc tures .  Local adjustment techniques, on the 

other hand, may have to  go around o r  through unstable a r e a s  which l ie  

in  the path f rom the old s t ruc ture  to the new one. Reorganization based 

an performance and event information should be considered comple- 

mentary techniques. When both types of information a r e  available, the  

most successful  reorganization scheme will  be  a combination of the two. 

Some adaptive sys tems presently proposed employ performance and 

eventiinformation a t  different levels in the adaptive hierarchy.  F o r  

example, the adjustment of a model (based on performance information) 

t o  determine sys tem charac ter i s t ics  (event information) which is then 

used to generate  the p r imary  sys tem performance gradient information. 

From a general  viewpoint it would appear that event information i s  most  

useful. for  initial g ross  restructur ing,  and performance information best  

u s  ed f o r  subsequent 'If fine tuning". 

3 . 2  Method of Approach 

The remaining chapters  will  be  concerned with reorganization 

based on event information. The greatest  emphasis will  be on obtaining 

event information f rom raw sys tem data. Taken together,  the r e su l t s  

provide a bas is  for  a coherent self-reorganization scheme.  However, 

In s o  f a r  a s  is possible, the seve ra l  a r e a s  have been developed inde- 

pendently s o  they each may be  of independent interest .  

The bas is  sys tem configuration is shown in F igure  3-1. The 

quantities shown a r e  deiined a s  follows: 

x(t) -- (n-dimensional) plant s ta te  vector.  

u( t )  - (r-dimensional) actual control vector.  This i s  the 

actual  control applied t o  the plant by the effectors.  

Each component of u(t) corresponds to  one effector. 





y(t) -- (m-dimensional) sensor  output vector. Each 

component of y(t) corresponds to  one sensor .  

$(t) -- (n-dimensional) estimated s ta te  vector. 

ud(t) -- (r -dimensional) desired control signal. 

c(t)  - (rc-dimensional) command signal. This may be  

z e r o  for  a regulator type control system o r  nonzero 

for  servomechanism type control. 

The plant (enclosed in the dotted line) is defined t o  include plant 

dynamics, effectors, and sensors .  The following set  of equations 

describe the plant behavior (excluding plant disturbances and sensor  

nois el 

Pla.nt dynamics: x(t) = Ax(t) + Bu(t) (3-1) 

Effectors: ~ ( t )  = ud(t) (3-2) 

Sensors: y(t) = Cx(t) (3-3) 

The matr ices  A, B, and C a r e  time-invariant and have dimensions 

(n X n),  (n X r ) ,  and (m X n) respectively. The significant feature of 

this plant description is that the effectors and sensors  a r e  assumed to  

be nondynarnic. In situations where effectors o r  sensors  have signifi- 

cant dynamics, such dynamics may be  included in the linear plant 

dynamics (3-1) through the use of an enlarged state  vector. The simple 

identity relationship (3-2) assumed fo r  the effectors is taken for  con- 

venience. A more  general functional relationship such a s  



can  be  brought into the form of (3-2) by defining a new desired control 

vector 

The feedback loop consists of a s t a t e  estimating fi l ter and a 

feedback control law generator.  The f i l ter  may be  designed to  minimize 

some stat is t ical  measure  of the e r r o r  between x(t) and ^x(t), such a s  in 

a Kalman f i l te r ,  o r  it may  b e  designed deterministically s o  that 2(t) 

approaches x(t) asymptotically in the absence of disturbances.  The 

la t te r  is often r e fe r red  to  a s  an "observer" [15]  . This particular 

configuration f o r  the feedback loop is usually seen  in an optimal control 

formulation. The separation theorem [ 201 suggests this kind of 

s t ruc ture ,  and it has been heuristically extended with the proposed use 

of observers  [ 15,191 . Briefly, the idea is to  solve the optimal control 

problem, assuming the s ta te  vector i s  known, to obtain a s ta te  feedback 

control law. Then s ince the s ta te  vector i s  not completely known, an  

est imate of the s ta te  ( from a Kalman f i l ter  o r  an observer)  is used 

instead to  generate the control signal. In these  formulations the re  is 

no external command signal, c(t) .  By allowing c(t) to  be nonzero, a 

servomechanism type formulation is possible, and the s ta te  feedback 

control law can b e  designed t o  satisfy c lass ica l  servoanalysis c r i t e r i a .  

F o r  the purpose of this  r e sea rch  it will  be  assumed that a11 events 

occur in the plant and restructur ing takes place in the  feedback loop. 

A rel iable  data processing capability is presumed. The data processing 

equipment may have internal redundancy and self -correct ing eapabilit ies 

of i ts  own in o r d e r  to  achieve reliability. The design of rel iable  data 

processing equipment i s  the subject of considerable (and continuhg) 



research [ 9 , 1 0 , 1 1 ,  18,241 , s o  it will not be belabored here.  The 

fol lo:~ ing events will be  considered: 

(1 b Effector fai lure -- a departure f rom the intended 

operation of the effectors described by Equation (3-2) .  

A failure i n  the ith effector is modeled mathematically 

a s  

where 2 . i s  a unit r-vector in the ith coordinate rl 

direction 

ith position 

and n(t) is an arb i t rary  sca lar  t ime fu.ncti0.n. 

(2) Sensor failure - a departure from the intended 

.operatio.n of the se.nsors a s  described by Equati0.n ( 3 - 3 ) .  

A failure in  the ith sensor  i s  modeled a s  

where emi is a unit m-vector in the ith coordinate 
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direction and n(t) is an a rb i t r a ry  sca la r  t ime 

function. 

(3) Changes in plant dynamics -- changes in the elements 

of the ma t r i ces  A ,  B, o r  C. 

The problem of detecting and identifying these  events is  discussed in 

grea ter  detail in Section 3.3.  

The restructur ing problem i s  concerned with altering the feed- 

back control law and the state-estimating f i l ter  t o  compensate f ~ r  the 

events described above. This  problem i s  discussed in Section 3 . 4 ,  

3 .3  - Detection and Identification Problem 

The problem of identifying events f rom raw sys tem data is  con- 

sidered in two s teps  -- detection and ide.ntification. 

3 .3 .1  Detection and the Detection F i l t e r  

Detection r e f e r s  to  the process  of obtaining event informa- 

tion based on accessible  signals f rom the plant. The desired control 

vector ud(t) and the sensor  output vector y(t) a r e  assumed to  be 

accessible  signals.  Since a l l  events a r e  assumed to  occur in the  plant, 

the feedback loop is not considered in the detection process .  

A solution to  the detection problem i s  developed in 

Chapter 4 in the form of a detection f i l ter .  The detection filter is a 

l inear f i l ter  driven by the accessible  signals ud(t) and y(t). The output 

of the f i l te r  i s  an "expected" sensor  output vector.  It represents  t h e  

sensor  outputs which would b e  obtained if t he re  were  no fai lures ,  

changes, or  other disturbances.  That is, if t he re  a r e  no disturbances,  

the f i l te r  output will approach the actual sensor  output vector 



asymptotically a s  the effect of initial condition e r r o r s  se t t les  out. 

When disturbances do occur the re  will  b e  a difference between the 

expec-tecl output f rom the f i l ter  and the actual  output f r o m  the sensor s .  

T h i s  difi"erence o r  e r r o r  signal i s  the source  of the desired event 

il1Torma-8,ion. The detection f i l ter  is  designed s o  that when part icular  

events occur the resul t ing e r r o r  s ignal  behaves in a manner  which is 

unasual and easily recognizable. Event information i s  obtained by 

looking f o r  these unusual e r r o r  responses.  

It happens that in the absence of any disturbances,  not 

aniy does the f i l t e r  output approach the  sensor  output, but the s ta te  of 

t ' " ~  f i l ter  approaches the s ta te  of the plant. In this  sense  the detection 

f r l k r  is a l so  a state-estimating f i l ter .  In some cases  it may even be 

desirable  to  allow the detection f i l ter  t o  s e r v e  a l so  a s  a s ta te  est imator .  

E3wever,  a f i l t e r  designed fo r  s ta te  estimation will  not be a successful  

dc:ectican f i l t e r  except by m e r e  coincidence. Whereas a s ta te-  estimating 

f i l ter  is designed to  suppress  a l l  e r r o r s  a s  much a s  possible, the 

detectiora f i l te r  is designed to  enhance and make easily recognizable 

those e r r o r s  which resu l t  f r o m  certain events. The f i l ter  must  be  

spccZieally designed to achieve this.  The r eason  a detection f i l ter  may 

also be a successful  s ta te  est imator  i s  that it can (and should) b e  

designed to  suppress  e r r o r s  other than those associated with the events 

it IS designed to detect. Therefore,  in the absence of those part icular  

events the e r r o r s  should be  smal l .  

3 .3 .2  Identification Decisions 

The  event information obtained f r o m  the detection process ,  

although highly correlated with the related event, may  not be  sufficient 



to  identify a specific event with absolute certainty.  Such uncertainty 

may be  the resu l t  of noise disturbances,  simultaneous multiple events, 

o r  events which a r e  simply not distinguishable f rom each other based 

on  the available data. Identification decisions a r e  concerned with the 

problem of identifying the most  likely event o r  events in the face of 

these  uncertainties.  Chapter 5 discusses  some standard techniques for 

making such decisions. 

3 .4  Feedback Restructuring 

Feedback restructur ing is concerned with finding a suitable 

feedback control law and state-estimating f i l ter  to  compensate for  the  

events defined in Section 3 . 2 .  A s  was mentioned in Section 3 . 3 .  '1, it is 

possible t o  use the s ta te  of a detection fi l ter a s  a s ta te  estimate,  

eliminating the need f o r  a separa te  state-estimating f i l ter .  In this  ease  

res t ruc tur ing  of the f i l ter  is taken c a r e  of in the solution to  the detection 

problem and need not be  considered a s  a separa te  restructur ing problem. 

Even if a separa te  observer  is used, the detection f i l ter  resu l t s  of 

Chapter 4 can b e  used a s  the bas is  for restructur ing algorithms fo r  the 

observer .  If a t rue ,  statist ically optimal Kalman f i l ter  is desired,  the 

Riccat i  equation f o r  it will have to  be resolved in whole o r  in pa r t .  If 

the speed of convergence of the Riccati  equation solution is doubtful, the 

use  of a detection f i l ter  a s  a temporary  state-estimating f i l ter  is 

suggested. 

Chapter 6 deals with the problem of restructur ing a l inear s ta te  

feedback law. The main objective will  be  to  achieve closed-loop 

stability with a minimum of calculation. Several  secondary objectives 

will  a lso b e  considered, however. Although the original feedback law 



may have been determined optimally, the time required presently to 

solve most optimal control problems seems to preclude the use of 

on-line optimal solutions a s  a basis for reorganization. The quadratic 

cost,  linear regulator problem, which involves solving a matrix R iccati 

equation, may be one exception. But a linear feedback law, quickly 

ob ta ined ,  could be used to achieve a stable operating condition while the 

more time-consuming optimal control solution is obtained. Or,  a 

performance-directed search might be used to arr ive  at  the final 

restructuring. 



CHAPTER 4 

DETECTION FILTERS 

4 . 1  Ge.neral Discussion 

The background and basic  formulation of the detection problem 

was discussed in Sections 3.2 and 3 .3  of the previous chapter.  A 

proposed solution -- the detection f i l ter  -- was briefly described in  

Section 3 .3 .  I .  This chapter deals with the design of these filte.rs and  

the information they produce. 

The special  case  in which the plant s t a t e  vector i s  fully 

measurable  is t reated separately in the next section. It s e r v e s  a s  a n  

introduction to  the m o r e  general case  of a partially measurable  s ta te  

vector .  

4.2 Fully Measurable State Vector 

The plant being considered is the linear t ime- invariant sys tem 

including effectors and sensors ,  described by the equations 

The quantities i.n this plant descripti0.n a r e  defined and discussed in 

detail  in Section 3.2. A fully measurable  s ta te  vector means that for 

any t ime t Equation (4-3) can be solved uniquely for  x(t), given y($). 

6 1  



Equation (4-3) i s  s o  invertible only if 

T h i s  implies that there  a r e  a t  least  n independent sensor s  and m 2 n. 

The detection fi l ter i s  a linear time-invariant sys tem driven by 

the accessible signals ud(t) and y( t) .  It is described by 

where z( t )  i s  the n-dimensional s ta te  vector of the f i l ter .  The mat r ices  

G ,  D, and Bf (of dimension (n X n), (n X m), and (n X r)  respectively) 

a r e  t o  b? chosen to  produce the desired event information, The e r r o r  

signal which will  be  the source  of this  information i s  defined a s  the 

d i f f e rence  between the plant s ta te  and the f i l ter  s ta te  

From (4-1) to  (4-3) and (4- 5) 

Now let  

Bf = B 

A - D C  = G 

6 2  



Then the e r r o r  equation becomes 

If G is  a stable mat r ix  ( i .  e .  , if a l l  i ts  eigenvalues have negative r e a l  

pa r t s )  then 

l im ~ ( t )  = 0 - 
t ---+ a3 

and z( t )  wil l  approach x(t) asymptotically provided there a r e  no dis- 

turbances.  satisfaction of (4-8) and (4-9) with a s table  G therefore 

yields a s ta te  estimati.ng f i l ter .  Equation (4-8), of course,  car1 always 

be satisfied by choice of Bf. Because of condition (4-4), there  alwajis 

exists a D satisfying (4-9) f o r  any G. If m = n, then C-' exists and the 

solution i s  unique 

If m > n, a (nonunique) solution is 

1 T D = (A - G) (cTC)-  C 

which can be  verified by substitution into (4-9). Condition (4-4) 

T guarantees that (C c)-I  exists.  

Having satisfied (4-8) and (4-9) by choice of Bf and D ,  G cao 

now be  selected to produce the additio.nal propert ies  desired of a 

detection f i l te r .  The next three  subsections will  demonstrate that a 

judicious choice fo r  G is  



w h e r e  I is the n X n identity mat r ix  and 0 is  a positive sca la r .  It 
f 

v v i l l  be  shown that this  choice fo r  G resu l t s  in an e r r o r  signal whose 

d i rec t ion  and magnitude a r e  directly and simply related to the event 

which  caused the e r r o r .  

4 , 2 . 1  Effector Fa i lure  Information 

Assume a fai lure  occurs  in the ith effector a s  modeled 

in  Sect ion 3 . 2  by 

w h e r e  . is an r-dimensional unit vector in the ith coordinate 
:? 1 

dia-ectiora, and n(t) is an a rb i t r a ry  sca la r  t ime function. Replacing 

(4-2) w i t h  (4-15) and assuming (4-8) and (4-9) a r e  satisfied, the e r r o r  

equation becomes 

w h e r e  b is  the ith column of B. Taking G a s  in (4-14), the solution of 
L 



Since a i s  positive, the  initial condition t e r m  asymptotically approaches 
f 

z e r o  s o  

~ ( t )  5s bi S' ~ " f ' t - 7 '  n ( r  ) d7 fo r  (t-to) >> - 1 64-18) 
Of 

to 

Note that  

is a s c a l a r  t ime  function, s o  that for  sufficiently la rge  t ,  ~ ( t )  maintains 

a fixed direction in s t a t e  space  - namely the direction of bi. An e r r o r  

s ignal  which maintains a fixed direction in the  s t a t e  space  corresponding 

th t o  s o m e  b.  is  therefore  indicative of a malfunction in the i effector.  
1 

In the s t r i c t  s ense  ~ ( t )  i s  not an access ib le  signa'l 

because x(t) is  not accessible .  How ever ,  ~ ( t )  can b e  generated s ince  

(4- 3) can b e  solved uniquely f o r  x(t) .  It is not necessary  t o  solve for 

x(t)  if one defines an output e r r o r  signal.  

which is  di rect ly  accessible .  F r o m  (4-18) 

t -uf( t -7)  

~ ' ( t )  25 Cbi e n ( r  ) d~ fo r  (t-to) >> - (4- 20) l 
"f 

to  

s o  E ' (t) maintains a fixed direction,  Cbi, in the m-dimensional output 

space .  Condition (4-4) ensures  that each direction in the n-dirnensieanal 

s t a t e  space  corresponds to a unique direction in the  output space .  



Whereas  the direction of E ' (t) o r  ~ ( t )  indicates which 

e"iectcsr has  failed, the e r r o r  magnitude contains information about the  

nature of the fa i lure ,  specifically information about n(t) . The magni- 

t ude s f  a? ' (t) o r  ~ ( t )  i s  proportional to  the output of a f i r s t -o rde r  l inear 

1 system (with t ime  constant --) driven by n(t). 
Of 

4 . 2 . 2  Plant  Dynamics Information 

The detection f i l t e r  a l so  can produce information about 

changes in the  elements of the ma t r i ce s  A ,  B, and C.  How ever ,  t he re  

a r e  cer ta in  changes equivalent t o  coordinate t ransformations which can 

never  be detected f r o m  the  access ib le  s ignals  y(t) and u d ( t )  Even 

w h e n  detectable,  coordinate t ransformation type changes can b e  inter-  

~ r e t e d  as  changes in init ial  conditions. This  wil l  suggest  the use of a 

s t a n d a r c  f o r m  for  modeling plant dynamics.  

Consider a plant whose describing ma t r i ce s  { A, B, C ) 

undergo a change amounting to  a coordinate t ransformation of the s t a t e  

space. The new ma t r i ce s  a r e  

where T i s  an n X n nonsingular mat r ix .  Assume the change occurs  

a: time to when the s ta te  of the  plant i s  x(to) = x . The output fo r  
0 

t > to is 



If the change had not occurred,  the output would have been 

Using (4-21) to (4-23), Equation (4-24) can be  expressed in t e r m s  of 

the old mat r ices  

T - ' A T ( ~ - ~ ~ )  - 1 
y(t) = CTe x o C T  f e  T AT(t-7 ) T.-lBU(T )d7 

Subtracting (4-2 5) from (4-2 6)  yields 

If xo is  an eigenvector of T with eigenvalue 1,  then Txo = xo and 

y(t)  = y ' (t) for  a l l  t > to. In this  case  the changed plant produces the 

s a m e  output a s  the old plant would have, s o  it i s  impossible to detect 

the change based on y(t) and ud(t). If Txo # xo the re  will  be a 



iranssenib difference between the two outputs. In either case  the control 

u6t) CauEes no output differences. 

Comparing (4-25) with (4-26) it i s  c lear  that the change 

g;ven by (4-21) to  (4-23) could instead be considered a difference in 

rnitiai ccinditions s tar t ing at  to.  In the present  context of self-  

reorganization the latter interpretation is  p re fe r red .  Changes in A ,  B, 

o r  C woc.ld initiate a restructur ing process ,  whereas a difference in 

in i t i a l  ccinditions is  taken c a r e  of automatically by the feedback loop. 

For this reason  a l l  plant descriptions which differ only by a coordinate 

t ransfor~nat ion  of the s tate  space will  be considered equivalent. The 

set of alJ such equivalent descriptions forms an equivalence c lass .  

Any member  of an equivalence c lass  can be  taken a s  

representat ive of the ent i re  c l a s s .  F o r  the purpose of identifying 

plant  dynamics it is  convenient to  take a s  the representat ive member 

that  description which puts the mat r ix  C in the s implest  form.  In the 

case  where there  a r e  exactly n independent sensors ,  C is  n X n and 

the most  convenient plant description is  the one for which C is  the 

identi ty mat r ix  

With C a s  in (4-28) the plant equations a r e  

( t )  = Ax(t) + Bu(t) 



In this  description a l l  plant dynamics changes appear a s  changes in the 

elements of A o r  B. The use  of equivalence propert ies  allows changes 

in C to  be interpreted a s  changes in A and B while retaining C = I. This  

presumes  the change in C does not reduce i ts  rank to less  than r .  If 

such a change does occur ,  condition (4-4) is  violated and the s ta te  

vector is  no longer fully measurable .  This situation i s  dealt wi th  in 

Section 4 .3  where the s ta te  vector i s  not assumed to be  fully measurable .  

Assume A and B change at  t ime to by an amount 4.A and 

AB, s o  the plant dynamics then become 

&(t) = (A + AA) x(t) + (B + AB) ~ ( t )  (4-32) 

Using (4-30), (4-31), and (4-32) for the plant description and the 

detection f i l ter  a s  previously developed, the e r r o r  equation i s  

= (A + A A )  x(t) + (B + AB) u(t) - Gz(t) 



By v i r t u?  of (4-30) and (4-31) t h i s  c a n  a l s o  b e  w r i t t e n  

K a l e  tha.: AA and BB have  been a s s u m e d  t ime- invar i an t  in obtaining 

(4- 34) and (4-35). After tne in i t ia l  condition t e r m  h a s  died out ,  the  

sel;tied-out e r r o r  is 

J1 f o r  (t-to) >> 
f 



With C = I the accessible  output e r r o r  signal defined by (4-19) i s  

s imply 

E ' ( t )  = C E ( ~ )  = ~ ( t )  (4-37) 

The components of the vector-valued t ime functions 

can be generated a s  the outputs of f i r s t -order  l inear sys tems l r i v e n  by 

the components of y(t) and ud(t). Identifying changes in A and B can 

now be  viewed a s  the problem of solving 

given E ' (t), + (t), and (t).  

Another useful viewpoint i s  to consider the e r r o r  pro-  

duced by a change in one element of A o r  B. Let a i j  be  the i j  th 

element of A .  Assume a .  undergoes a change to  a . .  + A a . .  at t ime to. 
l j  LJ 13 

Then 

A A T  AA = A a . .  e.e 
13 1 j 



n :v>cre e and $. a r e  unit n-vectors in the ith and jth coordinate 
i 3 

d irec$io-rs respectively.  The settled-out e r r o r  f o r  this  si tuation i s  

A A L  
~ ' ( t )  = a . .  e i  e .  $(t) 

1J J 

= a . .  Oi $ .(t) ' 3 J 

w h e r e  @ .(t) = 6T $ (t) is the jth component of $ (t) .  
J J 

F o r  a change A b . .  in the ijth element of B  
13 

A B  = A b . .  13 e i B r j  

and  the sett led-out e r r o r  i s  

= A h . .  9 , +  .(t) 
1J 3 

A n  e r r o r  signal in the direction of $ with magnitude i 

proportional to $ .(t) is indicative of a change in a .  .. An e r r o r  in the  
J 1J 

same direction with magnitude proportional to  + .(t) indicates a change 
J 

in b. The use of e r r o r  information t o  determine AA and A B ,  o r  aj ' 

otherwise model the plant dynamics,  i s  discussed in m o r e  detail  in 

Chapter 5. 

In ca se  t h e r e  a r e  m o r e  than n senso r s  (m > n) o.ne can 

t ake  



where  I i s  n X n and C2 i s  (m - n) X n. This  p re sumes  that the 

f i r s t  n s e n s o r s  a r e  independent ( i .  e .  , the f i r s t  n rows  of C a r e  

independent). If this is not the ca se ,  the output vector  y(t) can b e  

r eo rde red  t o  make it so .  The output relation is 

Par t i t ion y(t) into two vec tors  

where  x l ( t )  is n-dimensional and 1 2 ( t )  i s  (m  - n)-dimensiona 1. Then 

(4-48) is equivalent to 

The  output Y_ (t) can be used to  generate  an e r r o r  siginal 
1 

f o r  AA and A B  in exactly the s a m e  manner a s  for  the c a s e  C = I .  

Changes in C2 mus t  now be considered in addition to  changes iol A and B. 

1 (t) can b e  used to  produce an e r r o r  s ignal  f o r  this  possibility. Define 2 

a second e r r o r  vector  



If C 2  changes to  C 2  % AC2 

and 

Determining A C  is then a ma t t e r  of solving (4-54) f o r  AC2 given ~ ~ ( t )  2 

and (t), both of which a r e  accessible  s ignals .  a. 
Th is  development a s sumes  that C does not change in 

s ~ c h  a w a y  that the f i r s t  n s e n s o r s  become dependent. If that happens,  

the f i r s t  n rows  of C would no longer be l inearly independent, and there  

would  be no coordinate t ransformation which could produce the f o r m  of 

(4-4'7). This technique for  handling the c a s e  rn > n i s  appropria te  only 

if "celere exis ts  n s enso r s  which can b e  counted upon to  r ema in  always 

independent, thus ensuring the s t a t e  vector  wil l  always b e  fully 

measurab le  by those n s enso r s .  If th i s  i s  not possible,  the techniques 

of Section 4 .3 .  6 can b e  used to  obtain plant dynamics information. 

4 . 2 . 3  Sensor  Fa i lure  Information 

It was  shown in Section 4 .2 .1  that  an effector fa i lu re  

produces an e r r o r  s ignal  whose direction i s  associated with the 

ma Bgunctioning effector.  The situation i s  s imi l a r  for  s enso r  fa i lu res ,  

except "chat the information provided by the e r r o r  direction is  not a s  

p rec i se .  It wi l l  b e  shown that, in ge.nera1, the e r r o r  produced by a 

sensor  f;ailure wil l  lie in a two-dimensional plane. 

Assume a fa i lu re  occurs  in the ith s enso r  a s  modeled in 

Section 3 . 2  by 



where  8 is a unit m-vector  in the  ith coordinate direction,  and n(t)  m i  

i s  an a rb i t r a ry  s c a l a r  t ime  function. Replacing (4-3) with (4-55) in  the 

plant description,  and using the s a m e  detection f i l ter  a s  before ,  the 

e r r o r  equation is 

A 
= (A - DC) x(t)  - Gz(t) + I3 - ud(t)) - Demi n(t)  

The  solution of (4-56) i s  

and the settled-out e r r o r  is 

Note that  . ~ ( t )  i s  not an access ib le  signal,  nor can i t  b e  generated from 

access ib le  s ignals .  Equation (4- 55) cannot be  solved for  x(t) b e ~ ~ a u s e  

n(t) i s  an unknown. However, the output e r r o r  



(4- 5 9) 

is accessible .  n(t) and n ( a ) d r  a r e  s c a l a r s ,  s o  this 

sett led-oat e r r o r  always 1 n the plane formed in the  output space  by 

A 
the  two nr-vectors,  cDgmi and emi. In general ,  6 ' (t) wi l l  move 

a r o u n d  i n  th is  plane. The only c a s e s  in which ~ ' ( t )  maintains a fixed 

di rect ion a r e  

( i i )  if n(t) sa t i s f ies  the integral  equation 

w h e r e  a i s  an a rb i t r a ry  s c a l a r  constant. 

The e r r o r  plane defined by CI3gmi and @ i s  the s a m e  m i  

for a l l  e ~ u i v a l e n t  plant descriptions.  Equivalent descriptions a r e  

re la ted  b y  the coordinate t ransformation equations (4-21) t o  (4- 23) .  

The tranr;formation re la t ion fo r  D i s  

va5i;llch may b e  verified by t ransforming Equation (4-9) for  D. Then 

-1 A 
= CTT D emi = c~ $mi 



When m = n and @ i s  taken a s  the  identity mat r ix  a s  in  

Section 4.2.2, (4-9) and (4-14) can be  solved uniquely fo r  D t o  obtain 

Then 

and 

where a .  i s  the ith column of A .  Then (4-59) can b e  wri t ten 
1 

h The two-dimensional e r r o r  plane i s  uniquely determined by a i  and ei. 

(If a .  happens to lie along the direction of ei then the e r r o r  plane i s  
1 

degenerate,  and the  sett led-out e r r o r  wil l  lie in the fixed direction of 2: ) 

A sett led-out output e r r o r  which remains  confined to a plane forined by 

A dh a .  and e .  i s  indicative of a fa i lure  in the  i s enso r .  
1 1 



Each of the m sensor s  can be  associated with an e r r o r  

plane in the output space.  An  e r r o r  signal which remains  in one of 

these  error planes i s  indicative of a failure in the associated sensor .  

S m c e  there  a r e  rn e r r o r  planes in the rn-dimensional output space,  

these plaiies will  intersect :unless a l l  m planes a r e  degenerate).  

Hcwever, even when the e r r o r  planes associated with two different 

sensors intersect ,  it i s  s t i l l  possible to  differentiate between fai lure  

of the  two sensor s ,  except in the following special  cases:  

(1) The two e r r o r  planes a r e  coi.ncident, o r  in effect, 

both sensor s  have the same  e r r o r  plane. 

(2 )  The e r r o r  signal maintains a fixed direction 

coincident with the intersection of the two e r r o r  

planes. In o rde r  for this to occur ,  the sca la r  n(t) 

represent ing the sensor  fai lure  in 44-55) must  

satisfy a particular equation of the form of (4-61). 

Sections 4 . 2 . 1 ,  4 . 2 . 2 ,  and 4. 3 . 3  have described the 

e r ror  signal which the detection f i l te r  produces in response to 

indiv-adual effector fai lures ,  changes in plant dynamics, and sensor  

failures. Chapter 5 discusses  the problem of processing the e r r o r  

sngnal to identify the most likely event (or events) in the face of 

uncertain.ties resulting f r o m  noise disturbances, simultaneous 

mnltiple events, o r  events which a r e  indistinguishable based on e r r o r  

direction alone. The exceptional cases  mentioned above a r e  examples 

of the la t ter .  



4.3 Part ia l ly  Measurable State Vector 

A partially measurable s tate  vector means that 

s o  (4-3) cannot be solved for x(t). In the previous section it was shown  

that when the s tate  vector i s  fully measurable,  a single detection f i l ter  

can produce information about a l l  three  types of events -- effector 

failure,  sensor  failure, and dynamic changes. When the s tate  vector 

i s  only partially measurable,  the capabilities of a detection fil ter a r e  

more  limited. A single fi l ter,  in general, will not be able to produce 

a l l  the information that the f i l ter  in Section 4.2 does. However, the r e -  

sults of this section will show that if the plant i s  observable, i. e . ,  if 

(A ,  C) is an observable pair ,  any piece of event information found in  

Section 4.2 can be produced by some detection f i l ter .  The limited 

capacity l ies in the fact that it may take a number of different fi!ters t o  

provide a l l  the event information. 

In  order  that the resul t s  which follow will be generally applicable 

to a l l  three types of event information, a detection problem will be 

defined in fo rmal  mathematical t e r m s .  The detection fil ter will  s t i l l  be 

described by Equations (4-51, (4-8), and (4-9). Throughout Section 4 . 2  

the s tate  e r r o r  defined by (4-6) always satisfied an equation of the form 

where f is a time-invariant n-vector and v (t) i s  a sca la r .  Specifically, 
E 

(id f = bi and vE(t) = n(t) f o r  an effector failure,  



A 
( i i )  f = ei and v (t) = Aa. .x.(t) o r  

E 'J 3 

vE(t) = Ab. .u.(t)  for  a dynamics change, and 
'3 3 

A 
( i i i )  f = -Demi and v (t) = n(t) for a sensor  failure.  

E 

Equat ion  (4-69)  describes the s ta te  e r r o r  for what will be considered 

a "simpleM event - one effector fai lure,  one sensor  failure,  o r  a 

change i n  one element of A or  B. 

A s  before ~ ( t )  i s  not an accessible signal. The accessible e r r o r  

signal is tlie output e r r o r  

For effector failures and dynamic changes, (4-3) is valid and 

For senso:: failures (4-55) replaces (4-3) and 

The key feature of the detection fil ter in Section 4.2 is that the settled- 

out error  ~ ( t )  for a single event maintains a fixed direction in the s ta te  

space, Of course,  this a lso rreans that C E ( ~ )  maintains a fixed 

di rec t ion i n  the output space.  This is accomplished by choosing G = -of I .  

U n d e r  condition (4-68), however, Equation (4-9) no longer has a solution, 

ID, f o r  every G ,  and in particular may not have a solution for  G = -of I .  

To make the limitations on G more  explicit the s ta te  e r r o r  equation 

(4- 69) can. be rewritten a s  

E(t) = (A - DC) ~ ( t )  + fvE(t) 

by use  of (4-9) .  

80  



The design of detection f i l ters  is pr imari ly concerned with being 

able to specify certain properties of the matr ix  (A - DC) by choice of D 

It is  known that if ( A ,  C) i s  an observable pa i r ,  then a l l  n eigenvalues 

of (A - DC) can be arb i t ra r i ly  specified by choice of D [ 2 4 ]  . The 

following definition concerning specification of eigenvalues of a rnatrix 

will be useful in what follows. 

Definition 4 . 1  . The eigenvalues of an n X n matr ix can be 

specified almost arbi t rar i ly  if there exists a se t  of integers { n  . . . , n1 ) 
with 

such that the eigenvalues can be specified ni at a t ime.  

F o r  a r e a l  matr ix this imposes a slight restr ic t ion on the 

specification of complex eigenvalues, because they must appear in 

complex conjugate pa i rs .  F o r  example, in the case of a r e a l  4 Y 4 

matr ix  (n = 4) with nl = 3 and n2 = 1, three of the eigenvalues m u s t  be 

specified a s  a group, then the final one is specified separately.  Since 

complex eigenvalues must occur in conjugate pairs ,  the group of th ree  

eigenvalues can have at most one complex pair  with one r e a l  eigenvalue. 

The final eigenvalue specified separately (as  a group of one) mus t  be 

rea l .  The possibility of two complex conjugate pairs  of eigenvalues i s  

theref o r e  'excluded . 
A formalized definition of detectability can now be stated., 

Definition 4 .2 .  The event associated with the vector f i.n 64-73) 

is detectable (or simply, f is  detectable) if t he re  exists a matr ix $3 

such that 



(1 1 C E ( ~ )  maintains a fixed direction in the output space 

(where ~ ( t )  is  the settled-out solution of (4-73) with 

v (t)  an arb i t ra ry  sca lar  t ime function), and 
E 

( 2  b a t  the same time, al l  eigenvalues of (A - DC) can be 

specified almost arbi t rar i ly .  

Condition (1) is the distinguishing feature of a detection fil ter 

and  is the source of the event information. There a r e  severa l  reasons 

for condir;ion ( 2 ) .  The matr ix (A - DC) should at least  be stable s o  

that  the initial condition t e r m  in the solution of (4-73) will die out. 

Ot~erw ise  C E ( ~ )  will not sett le out to a fixed direction. But beyond 

thas, it would be desirable to have enough control over the eigenvalues 

c:" ( A  - D82) to be able to influence the t ime required f o r  C E ( ~ )  to  set t le  

OUIC. A second reason for  wanting to control the eigenvalues of (A - DC) 

is tha t  it would then be possible to tailor the dynamics of the system 

(4-73) to the expected dynamic character is t ics  of the drive function 

v t ( i ) ,  thereby enhancing the output e r r o r  signal. Finally, condition ( 2 )  

i s  somewhat eas ier  to  deal with mathematically than some alternative 

poss~bl l i t ies .  What can be gained (and lost) by weakening condition ( 2 )  

v~ L ~ E  become c lear  later in this chapter. 

The next section deals with the detectability of a simple event. 

Sec.;rons 4.3.2,  4 .3 .3 ,  and 4 .3 .4  a r e  concerned with the problem of 

d e t e c t ~ n g  a number of events with a single f i l te r .  The final three sections 

adar~t  the  general resul t s  to the three  types of events. 

4 . 3 . 9  Detection Theor em 

The main resul t  of this section is the following theorem. 



Theorem 4.1.  Every vector in the s ta te  space (R") is 

detectable in the sense  of Definition 4.2 if and only if (A, C) is  an 

observable pa i r .  

The proof of this theorem i s  based on a number of in te r -  

mediate resu l t s  concerning propert ies  of finite-dimensional l inear 

vector spaces.  The following lemma establishes the connection be tween  

these vector spaces and condition (1) in the definition of detectability. 

Lemma 4 .1 .  Condition (1) of Definition 4.2 is  satisfied 

if and only if 

r k  C[ f ,  (A - DC) f ,  . . . , (A - DC)"-'~] = 1 44- 7 5) 

Proof:  The settled-out solution of (4-73) is  

Applying the r e m a r k s  of Section 2 . 2  to  the present  situation, one may 

conclude that ~ ( t )  in (4-76)  lies in the controllable space of f with 

respec t  to  (A - DC), or  equivalently in the range space of 

w, = [ f ,  (A - DC) f ,  ..., (A - DC)"-' f ]  g 4 - 7 ~ )  

Therefore ~ ( t )  may be  expressed in the form of (2-18), 

for  some n-vector g(t) which depends on v (t). Then 
E 



i" r . , ~  CIAf = I ,  then the range space of CWf i s  one-dimensional and it 

f~llcn~ars immediately that C E ( ~ )  lies in a fixed direction for any g(t). 

Therefore (4-75) is  sufficient. 

By the definition in Section 2. 2,  a l l  s ta tes  in the 

controllable space of f can be driven to  z e r o  by some (control) v (t) .  
E 

B ~ t a  a s t ~ t e  t ra jectory f o r  (4-73) can be followed in either direction, 

s o  it 1s also possible to r each  every state in the controllable space of f  

s tarxing from the origin. This means ~ ( t )  can be driven to any s ta te  

1:: lhe range  space of Wf. Therefore condition (1) can be guaranteed 

for a rb l t r a ry  v (t) only if r k  CWf = 1. This establishes necessity and 
E 

cosn-oletes the proof. 

Finding a D which satisfies (4-75) is  the f i r s t  s tep in 

desig9ain;g a detection f i l ter .  The following definition is  made for future 

ease  of reference.  

Definit ion4.3.  An n X  m matr ix,  D, satisfying(4-75) 

w i l l  be r e fe r red  to a s  a detector gain for f .  

The next lemma introduces a type of vector associated 

w ,.t h f wkiich will  be important not only in the proof of Theorem 4 .1  but 

a l so  in the actual design of detection f i l te rs .  

Lemma 4.2.  If 

( 1  (A, C) i s  an observable pair ,  

( i) r k  Wf = k, and 

C ii) r k  CWf = 1 

whe re  59 i s  defined by (4-77), then there exists an n-vector, g, in the f 

controllable space of f  (with respec t  to [ A  - DC] ) such that 



and 

Proof:  Now 

C(A - DC) = CA - CDC (4-82) 

c ( ~  - D C ) ~  = CA(A - DC) - CDC(A - DC) 

= CA2 - CADC - CDC(A - DC) 

(4- 8 3 )  

and, in general ,  

for  any j.  This  sequence of equations i s  equivalent t o  the single 

m a t r i x  equation 



A 
w h e r e  T- i s  an m*(j + 1) m.(j + 1) t r iangular  ma t r ix  given by 

.I 

CAD 

A A 
From the form of T .  in (4-86)  it is c lear  that [ 1 + T. ]  is nonsingular, 

J J 
Ta.;;ng 3 = k - 2, (4-87) implies that (4-809 is satisfied if and only if 

44-88) 

A s  w a s  noted in Section 2 . 2 ,  condition (iid implies that 

the range space of the  truncated ma t r ix  

W f ~  
= [ f ,  (A - D C ) f ,  . . . ,  (A - D ~ ) ~ - ' f l  (4-89) 

has dinaeinsiona k and coincides with the controllable space  of f .  A n y  
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vector in this space ca.n be expressed (uniquely) a s  

where p is a k-vector. Substituting (4-90) into (4-88) yields 

Since p i s  a k-vector, (4-91) will have a nonzero solution if and only if 

Now 

Recal l  that the controllable space of f i s  an invariant subspace. 



for some k X k matrix P. Then 

for  any j 2 0. F r o m  condition (iii) 

and theri2fore (4-91) does have a nonzero solution for 8 .  Then g given 

by (4-90) is also nonzero and satisfies (4-88) and (4-80), 

Relation (4-81) follows from condition (i). Suppose 

T~ge the r .  with (4-80) and (4-87) this would imply 



o r  equivalently, 

k- 1 
C[ g, (A - DC) g, . . . , (A - DC) g ]  = - 0 

(4-101) 

Now g i s  in  the controllable space  of f ,  which is a n  invariant subspace 

of dimension k. The cyclic space  generated by g therefore  can have 

dimension no l a rge r  than k .  Then (4-101) would imply 

n- 1 C[ g, (A - DC) g, . . . , (A - DG) g] = - O 

(4-102) 

c 
C(A - DC) 

But  with (4-87) this  would mean 



tvhich contradicts condition ( i) .  One mus t  conclude that (4-99) is not 

true. This  completes the proof. 

Relation (4-81) guarantees that the  cyclic space  

generated by g (the controllable space  of g with respec t  t o  [ A  - DC]) i s  

of dimension k,  and s o  coincides with the controllable space  of f .  Note 

also that (4-80) yields 

k- 1 k- 1 
[ g ,  ( A - D C ) g ,  ..., ( A - D C )  g] = [ g , A g ,  . . . , A  g] 

(4- 105) 

s o  the s e t  of vectors  {g, Ag, . . . , Ak-lg} f o r m  a bas i s  for  the 

sontrol:.able space  of f .  It should not be  construed f rom (4-195) that  

t h e  cyc'lic space  generated by g with respec t  to  A also has  dimension k.  

It can  be l a rge r .  Now f can b e  expressed a s  

for some s e t  of s c a l a r s  { oil, . . . , ol ). The magnitude of g i s  not 

r e s t r i c t ed  by (4-80) and (4-81). It will  be  convenient to  take the magni- 

tude s o  that the (nonzerc) t e r m  in (4-106) with the highest pawer  of A 

ha s  a coefficient of unity. Premultiplying (4-106) by C and using (4-80) 

gives 

if Cf f - 0 then elk # 0 and the magnitude of g i s  taken s o  that % = 1. 

In general ,  if for  some nonnegative integer p 

C A J ~  = - o fo r  j =  0, ..., p -  I 

(4- 108) 

C A ~ ~  # - 0 



then 

CY = 0 for  j = 0 ,  . . . , p -  1 
k- j 

(4- E 09) 
CY 
k-I-1 # 0 

and g is taken s o  that %- = 1. The fact that ( A ,  C) is  an observable 
I-1 

pai r  guarantees that (4- 108) i s  t rue  fo r  some p k - 1. This follows 

by the s a m e  reasoning used to  prove (4-81). With the magnitude of g 

taken a s  above, 

if (4-108) applies (4-111) 

Definition 4.4. A n  n-vector, g, satisfying (4-SO), 

(4-81), and either (4-110) o r  (4-111) i s  defined to be a kth o rde r  

detection generator for  E. 

This terminology is motivated by the ro le  which detection 

generators  play in the design of detection f i l te rs .  Specifically, 2 

detection generator for f can be used to generate a detector gain for f. 

Lemma 4.2 demonstrates that t he re  always exists a detection generator 

associated with a detector gain. The construction of the detection 

generator in that lemma i s  based on know ledge of D, s ince WfT and 

in (4-90) depend on D. However, the definition of a detection generator 



cicpedds only on A ,  C, and f ,  s o  conceptually it i s  independent of any 

partrcubar D.  The next theorem shows that if a detection generator  

can  De found by some  means  based only on A ,  C, and f ,  then it is  

p a s s ~ b l e  to wr i t e  down immediately a solvable equation for  D which 

coi only yields a detector gain, but a lso allows a rb i t r a ry  specification 

of k elgenvalues of (A - DC), where k i s  the o rde r  of the detection 

ges~e ra to r .  The construction in Lemma 4.2 is  not an appropriate 

method for  finding a detection generator because it is  based on knowledge 

oi D .  The problem of finding a detection generator  wil l  b e  discussed 

1st er . 
Theorem 4 . 2 .  If the conditions of Lemma 4 . 2  a r e  

sa-c isf~ed,  and the k eigenvalues of [A - DC] associated with the 

cot3troliable space  of f a r e  given by the roots  of 

w h e r e  t k e  p .  a r e  s c a l a r s  and s i s  a complex var iable ,  then D musk be  
1 

a sohution of 

k 
I I C A ~ - ' ~  = plg + p 2 ~ g  + . . . + p k P g  + A g 

(4-113) 

-6 he re  g i s  a kth o rde r  detection generator fo r  f .  Conversely,  if t he re  

ex is ts  a kth order  detection generator ,  g, then any solution of (4-113) 

is a detector gain f o r  f ,  and k eigenvalues of [A - DC] will  b e  given by 

t ne root:; of (4- 11 2) .  



Proof:  

Assume the hypothesis for  the f i r s t  par t  of the theorem, 

Applying the r e m a r k s  of Section 2 . 2  to this situation with (4- 112:) given 

implies 

k (A - DC) f = - plf - p2(A - DC)f- . . . - pk(A - DC) k- If  

(4-114) 

Lemma 4.2 establishes the existence of a kth o rde r  detection generator 

g. Since g a s  wel l  a s  f i s  a generator of the controllable space of f ,  

(4-114) applies to g also 

k k- 1 (A - DC) g = - plg - p2(A - DC)g - . . .a - pk(A - DC) g 

(4-115) 

Using (4-105), (4-115) reduces to 

k- 1 k- 1 k- 1 (A - DC)A g = - DCA g = - plg -... - pkA g 

(4-116) 

which i s  equivalent to  (4-113). This proves the f i r s t  par t  of the theorem. 

Assume now there  exists a kth order  detection generator,  

g .  Let D be any solu"ioa? of (4-113). Equation (4-115) follows from (4-113) 

by revers ing  the development above. Therefore g generates a cyclic 

space  of dimension k with associated eigenvalues given by (4-112). 

Nlor eover,  



s 3 is a detector gain for  g. But f i s  contained in the controllable 

s o a c e  of g by vir tue of (4-110) o r  (4-111). Hence the controllable 

s2ace of f is contained in that  of g, and s o  D i s  a detector gain for  f 

a s  w e l l  a s  g. If the controllable space  of f ha s  dimension k ,  then it 

colnerde:; with the controllable space  of g and has  associated eigenvalues 

glrea by (4-112). But the  fact  that g is a kth o rde r  detection generator  

and D sat isf ies  (4-113) does not necessar i ly  mean  that  the controllable 

space 01 f has  dimension k .  F o r  cer ta in  values of the coefficients p. 
l J  

it may have dimension less  than k .  In that  c a s e  the eigenvalues 

assoc1at3d with it a r e  a subset  of the  k roo ts  of (4-112). In e i ther  ca se ,  

k ergenvalues of [A - DC] a r e  given by (4-112). This  completes the 

p ~ o o f  of Theor  em 4.2. 

With the  use  of (4-110) o r  (4-111), Equation (4-113) may 

be put i n  a m o r e  convenient f o r m .  Premultiplying (4-110) by C yields 

.which gives 

a s  the equation for a detector gain when Cf # - 0. Premultiplying (4-111) 

by C A , ~  yields 

;r,i b ich gives 



for  the detector gain when (4-108) applies. It is  cumbersome and 

unnecessary to c a r r y  along resul t s  f rom both (4-110) and (4-1111, 

s ince (4-110) can be  viewed a s  a special  case  of (4-111) with p = 0 .  

But ra ther  than using the general  form, the algebra will be s impler  and 

m o r e  readable if (4-1 10) is used and (4- 111) is brought into the forn? of 

( 4 - 1 1 0  This can be done by premultiplying (4-111) by AP to  get 

= a l ~ p g  + ... + a Ak-2 k-p -1 g + A ~ - ~ ~  

(4-122) 

A l l  the resul t s  which follow from (4-110) can be applied to  the general  

case  by replacing f with A p f  and Qi with 0 for  i  = 1, . . . , k i  -p 

(defining a. = 0 for  i  5 p) .  
1- IJ 

The solution of (4-119) is developed in the lemma below. 

Because the resul t s  will  be used again later,  it i s  presented in a 

general form.  

Lemma 4.3. Let D, S, and Q be  matr ices  of dimension 

n X m ,  m X 1 ,  and n X 1 respectively. If r k  S = B then the general 

solution of the equation 

where D r  i s  an arb i t ra ry  n X m matrix.  

Proof: 

The general solution of (4- 123) can be  expressed in  the 

form 



w1:ere D is a particular solution of (4-123) and Do is the general 
1s 

s elution 12f the homogeneous equation 

T -1 Since rk S = 1 , rk(STS) = 1 and (S S) exists.  A particular solution 

of (4-123) is 

-1 T D  = Q ( S ~ S )  S (4-127) 
P 

w h i c h  can be verified by direct substitution. 

It can be shown that the general solution of (4- 1 2 6 )  can be 

expressed in the form 

uoere D '  i s  an arb i t ra ry  n X m m a t r i x .  Let  DA be any solution of 

(4-126). Take D '  = DA . Then 

Therefore, al l  solutions sf 64-126) can be expressed in the form of 

-1 T 14-128). On the other hand, D P [ 1  - S(sTS) S ] is a solution of (4-126) 

for any D \ since 

Substituting (4-127) and (4-128) into (4-125) gives (4-124) and com- 

pletes the  proof. 

Specializing this resul t  to (4- 119) gives 



a s  the general  solution of (4-119). Note that [ ( ~ f ) ~ ~ f ]  is  a nonzero 

s c a l a r  s ince Cf - 0. F o r  D given by (4-131) 

where 

k- 1 A ' = A - plg + . . . + pkA g + Akg ] [ ( ~ f ) ~ C f ]  - ' ( c ~ ) ~ c  
(4- 133) 

and 

A brief summary  of what has been accomplished up to  

this  point is  probably useful. The [ A  - DC] given by (4-132) sat isf ies  

(4- 75) which is  equivalent to condition (1) for  the detection of f .  

Condition (2)  remains  to be dealt with. In the process  of finding a 

detector gain given by (4-1 31), k eigenvalues of [ A  - DC] can be 

specified arb i t ra r i ly  by selecting the s e t  of coefficients (p 1 2  Pk> 
a s  desired.  Condition (2)  will  be satisfied only if there  is  enough 

freedom left in the choice of D to almost a rb i t ra r i ly  specify the 

remaining (n - k) eigenvalues of [ A  - DC] . The a rb i t r a ry  mat r ix  D F  

rep resen t s  the freedom left in the choice of D af te r  having satisfied 



(4-419). Regardless of the choice of D ' ,  condition (1) will be satisfied 

a n d  k eigenvalues of [ A  - Dc] will be given by (4-112). The question 

w h i c h  now must be answered is,  how many additional eigenvalues of 

A - DC] = [ A  ' - D ' c ' ]  can be specified by f r e e  choice of D F ?  The 

following lemma answers this question, 

Lemma 4 . 4 .  If A ', C r ,  and D t  a r e  r e a l  mat r ices  of 

dimension u X n, m X n, and n X m respectively, the number of 

eigenvalues of [ A  ' - Dl C f]which can be arb i t ra r i ly  specified by f r ee  

chnice sf D '  is  equal to q r ,  where 

?Jioreover, for any D '  the remaining (n - q ' )  eigenvalues of [A ' - D ' C 

a r e  equ21 to corresponding eigenvalues of A ' . 
Proof:  

This lemma can be proved using the fact mentioned 

ear l ie r  that a l l  eigenvalues of [ A f -  DOC'] can be arbi t rar i ly  specified 

if and  orlly if (A ' ,  C ' )  is an observable pair .  Let 

C '  

C'A ' 

; I A  '"-1 



Since r k  M '  = q '  , t he re  a r e  (n - q '  ) independent solutions of 

Let  {z l ,  . . . , z r )  b e  a s e t  of such independent solutions and def ine  
n- q 

the  n X (n - q r )  mat r ix  

Then 

and 

The range  space  of N '  coincides with the null space  of M ' .  The 

r e su l t s  in Section 2 . 3  show that the  null space  of M '  i s  an invariant 

subspace with respec t  t o  A'. It follows that the  range space  of N P  i s  a n  

invariant space  and therefore  

f o r  s o m e  (n - q t  ) X (n - q ' )  ma t r ix  Ph. Let  NA b e  any n X q '  matrix 

such that the n X n composite ma t r ix  

is nonsingular. TN9 can b e  used to define a coordinate t ransformation 



- 1 - 1 
' - D r f  = TN, AITN, - TNr D ' C '  TNf 

so [ 3  ' - Drc ' 1  and [ A  ' - D ' C ' ]  a r e  s i i n i l a r  m a t r i c e s  and have  

ident ica l  eigenvalues . Also  

(4- 147) 

and since TN , is nonsigular  

From. (4-143) 

If is par t i t ioned into 

wi th  block dimens ions  



then 

Using (4-141) 

Substi tut ing (4-151) and (4-152) into (4-149) y ie lds  

Tak ing  just the  l a s t  (ra - q s )  columns of t h i s  m a t r i x  equation 



J iN, is nonsingular, s o  this implies 

Ic par t icu la r  

Partitiorling ' and B' to  conform with ' 



Then 

F r o m  the block triangular fo rm of (4-164) it i s  c lear  that the eigenvalues 
- 

of [ X '  - D r C r ]  (and therefore of [ A '  - D ~ c ' ] )  a r e t h e  combined 

eigenvalues of [ x r  - a '? ' ]  and 11 1 1  Now 



- 
SIP,,, is  q '  x q ' .  this implies that (Ai l ,  C ' )  is anobservable  

11 1 

pa i r .  Therefore,  a l l  q '  eigenvalues of the q r  X q r  matr ix  [ x i 1  - DIE' ]  
1 1  

can be specified arb i t ra r i ly  by choice of B '  The remaining (n - q ' )  1 ' 

elgenvalues of [x ' - D r ? ' ]  , and thus of C A ' - D '  c ' 1 ,  a r e  the eigen- 

values i3f 3 '  which a r e  not affected by any choice of D r .  F r o m  (4-158) 22 

i t  can be seen that the (n - q ' )  eigenvalues of x P  a r e  eigenvalues of x f  22 

and thu:; of A '. This completes the proof of the lemma. 

With the resu l t  of Lemma 4.4 it is  now possible to 

conclude that the total  number of eigenvalues of A - DC = A' - D t C '  

which can be specified while satisfying (4-119) is  (k + q ' )  where q '  i s  

given by (4-135) and k i s  the o rde r  of the detection generator in (4-119). 

Condit ion (2)  of detectability will  be satisfied if and only if k + q '  = n. 

The next problem i s  to find under what circumstances ( e .g . ,  for  which 

detection generators  of what order )  is  k + q '  = n. Since A '  depends on g, 

it appegrs that M '  given by (4-136) and q '  = r k  M h l s o  must depend 

on g .  ::he following theorem shows that this is not the case .  It 

establishes the very significant fact that the number of additional 

eigenvalues of [A - DC] which can be  specified af ter  satisfying (4-119) 

does not depend on the particular detection generator g o r  its o rde r  k .  

Theorem 4.3.  If D is  constrained to  be  a solution of 

$4-119) (or  equivalently (4-113) ), then the number of eigenvalues of 

[A - DC] which can be arb i t ra r i ly  specified, in addition to those given 

Sg7 (4-1 L2), is  equal to 



where C' i s  defined by (4-134) and 

Proof: 

By Lemma 4 . 3  a l l  possible solutions of (4- 119) a r e  given 

by (4-131) with D r  a rb i t ra ry .  The number cf additional eigenvalues 

which can be  specified is  therefore  the number of eigenvalues of 

[ A  ! - D '  C ' 3 which can b e  specified by f r e e  choice of D l ,  where A is 

defined by (4-133). By Lemma 4 . 4  this number i s  q '  given by (4-135). 

Premultiplying (4-11 0) by A yields 

k Solving this  equation f o r  A g and substituting the resu l t  into (4-133) fo r  

A '  gives 

+ Af - a! A g -  ... - A k - l  
1 k-1 gl [ ( C f l T ~ f  - I ( c I ) ~ c  



= - 0 f o r  j = 0 ,  ..., k -  2 (4-171) 

k- 1 
and with CA g = Cf f rom (4-118) 

= C'f  = C f - C f  = - 0 (4-1 72)  

Then 

= 0 f o r  j  = 0 ,  ..., k -  2 - 

a n d  solving (4- 110) fo r  Ak- lg  gives 

s i n c e  

Assum e  now 

c ~ K ~ A ~ ~  = - o f o r  j = 0 ,  . . . , k - I  



i jt-1 
= C ' K A  g = - 0 f o r  j = 0 ,  . . . ,  k -  2 

(4-117) 

and 

s i n c e K f  = - 0 .  T h e r e f o r e ,  by induction, (4-176) is v a l i d f o r  a l l  i ,  0 

and j = 0 ,  . . . , k - 1. S ince  z in (4- 170) is a l i n e a r  combinat ion  of d 
j t h e  v e c t o r s  {A g ; j = 0,  . . . , k - 1 } it fol lows that 

Then  

'* ' = c 'K  - C r z d  [ ( ~ f ) ~ c f ]  -'(Cf)TC = C f K  (4-180) 

and ,  in g e n e r a l ,  

There f  o r e  

C 

C ' K  



S~bsui tu t ing  this  into (4-135) gives the desired resul t  and completes the 

proof. 

Note that K and C '  do not depend on g o r  k .  Therefore,  

M '  and q ' = r k M '  a r e  independent of g and k.  This means that regard-  

l e s s  of what detection generator i s  used to  solve fo r  a detector gain and 

regard less  of its o rde r ,  the amount of freedom left in D for  specifying 

additional eigenvalues i s  always the same ,  It depends only on A ,  C, 

and f a  R ecal l  that the number of eigenvalues which can be specified in 

the process sf  satisfying (4-119) i s  equal to  the o rde r  of the detection 

generator.  It now becomes c l ea r  that condition (2) of detectability can 

be satisfied if and only if it is possible to  find a detection generator of 

o rde r  (62 - q 9). Note a l so  that a detection generator can never have 

o rde r  l a rge r  than (n - q 9, because this  would imply specification of 

more than n eigenvalues, which i s  impossible for  an n X n matr ix .  

This rno tivates the following definitions. 

Definition 4.5. The null space of M ' given by (4-1 82) 

is defined to  be  the detection space of f .  

Definition 4 . 6 .  The dimension of detection space  of f 

is defined to be the detection o r d e r  of f .  

Definition 4. 7. A detection generator for  f whose 

order is equal to  the detection o rde r  of f is defined to be a maximal  

detection generator (or  simply, maximal  generator) fo r  f .  

Let the detection o rde r  of f be denoted by v .  The 

deteetior~ o rde r  of f is equal to  the dimension of the null space of M I ,  s o  

w h e r e  q = r k  MI with MI given by (4-182). The detectability of f now 



depends on being able to  find a maximal generator.  The next theorem 

establishes the conditions under which this i s  possible. 

Theorem 4.4. If (A, C) is an observable pair ,  then 

every n-vector f has  a maximal detection generator and it is  unique. 

Proof: 

F o r  an a rb i t r a ry  n-vector f ,  let K, M ' , and N ' be 

defined by (4-167), (4-182), and (4-138) respectively with r k  M f  = q ?  

The detection order  of f is  v = n - q ' .  Let 

where P is a v-vector to  be  determined. F o r  a maximal generator 

it i s  necessary that 

Note that K in (4-167) has the same form a s  [ A  - DC] with 

D = A E [  ( ~ f ) ~ C f  ] - I  ( ~ f ) ~ .  Therefore,  Equation (4-87) can be applied 

to  K to obtain 

A 
where T;-2 has the fo rm of (4-86) with D replaced by Af [ (CflTcf ] ''(cc)? 

109 



A 1 Since 8 9 T v - 2  is nons ingu la r ,  (4-185) is equivalent  t o  

or w i t h  (4-184) 

C N '  

CKN ' 

This eq.lal ion w i l l  have  a n o n z e r o  so lu t ion  if and  only if 

C N '  

CKN ' v-2 < r k  CN" r k  CKN'  + ... + r k  CK N "  - 

(4-190) 

Since M f N '  = - 0 , 

C I K ~ N '  = - 0 f o r  i = 0, .... n - 1 (4-191) 



Substituting (4-134) into (4-19 1) gives 

o r  

Then 

( rk(Cf) = 1 fo r  i = 0, . . ., n - 1 

(4- L 94) 

Applying (4-194) t o  (4-190) yields (4-189) and proves  that  (4-1813) has a 

nonzero solution. Since r k  N ' =  n - qq' = u,  g given by (4-184) i s  also 

nonzero and sa t i s f i e s  (4-187) and (4-185). 

It wi l l  now b e  shown that 

F i r s t  note that  with (4-185) 

Kg  = ~g - A ~ [ ( c o ~ c ~ - ~ ( ~ ~ ) T ~ ~  = A g  (4-191s) 

2 
~~g = K A ~  = A g - ~ f [ ( ~ f ) T ~ ~ ~ - 1 ( ~ ~ ) ~ ~ ~ ~  = A 2 g  

(4- 197) 

and, in general ,  

i K~~ = A g fo r  i = 0 ,  ..., U -  1 (4- 198) 

Then (4-195) is equivalent t o  CKV-lg # 0. F r o m  the f o r m  of M' i n  

(4-182) it follows (from Section 2.3) that  the null  space  of M '  iis a n  

(n - q '  )-dimensional invariant subspace w ith r e spec t  t o  K .  Therefore ,  



g ,  which is in? the  null space  of M I ,  can generate  a cyclic subspace with 

respect ko K of dimension no l a rge r  than (n - q '  ) = V. This means  that  

Kn - 1 the range  space  of g, Kg, . . . , g] coincides with the  range  space  

v- 1 
of L g ,  Kg, ..., K g ] .  Now i f C K V - l g = O ,  - t h i s toge the rwi th (4 -187)  

V-  1 n- 1 
g.ves C[ g, Kg, . . . , K g ] = 2 which implies C Lg ,  Kg, . . . , K g] = 2, 
0 r 

Again applying (4-87) to  K with j = n - 1 ,  (4-199) would imply 

which would mean  (A, C) is not an observable pa i r ,  s ince  g i s  nonzero. 

Bu t  this contradicts  the hypothesis, s o  one m u s t  conclude that  

which by (4-198) gives (4-195). 

Relation (4-201) guarantees that 

v- 1 r k [ g ,  Kg, . . 0 .  K g 1 = (4-202) 

since by (4-187) KV- lg  mus t  b e  independent of the vec tors  {Kig; 

i = 0, * .  . , v - 2 2 in o r d e r  to  sat isfy  (4-201). Therefore ,  the s e t  of 
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vectors  { K ~ ~ ;  i = 0, . . . , v - 1) fo rm a basis  for  the null space  of M '  

(or equivalently, the detection space  of f ) .  By (4-198) th is  se t  of basis 

i vectors  i s  the s a m e  a s  the s e t  {A g ;  i = 0, . . . , v - 1). Now 

C ' f  = Cf - Cf = - 0 (4- 20 3) 

and C r ~ i f  = - 0 for  a l l  i > 0 because Kf = - 0. Therefore,  

C '  

C 'K  
f 

6 , n - 1  

M' f  

s o  f is in its own detecti0.n space. Then f ca.n b e  expressed a s  a linear 

i combinati0.n of the basis  vectors  {A g ;  i = 1 ,  . . . , v - 1) 

It has been shown that g is nonzero and sat isf ies  (4-80), (4-81), and (4-106) 

with k = V.  By the s a m e  argument used previously, the magnitude of g 

can be taken s o  that g sat isf ies  (4-110) o r  ( 4 - I l l ) ,  thus making it a v th 

o rde r  detection generator f o r  f .  By Definition 4.7 this  g is a maximal 

detection generator for  f . 
F o r  completeness, some clarifying r e m a r k s  shou1.d be 

made  concerning the general  case  described by (4-108). As mentioned 

ea r l i e r ,  this c a s e  is obtained by replacing f by APf. Equation (4--204) 

then becomes 



w h i c h  shows only that APf i s  in the detection space  of f .  However, it 

can be  sihown that f i s  in this  space  a s  well. By the s a m e  development 

used to  obtain (4-198) f r o m  (4-185), it follows f r o m  (4-108) that 

i ~~f = A f fo r  i =  0, ..., Y (4-207) 

Substituting th i s  back into (4-108) yields 

which in t u rn  gives 

C' 

C ' K  

c 'K' 

Substituting (4-207) into (4-206) yields 

Combining (4-209) and (4-210) gives 



M'f  

and proves that f i s  in the detecti0.n space.  Equation (4-205) tkterefo.re 

is valid for  the general  case .  

The observability condition guarantees that g is unique* 

Suppose g and g a r e  both maximal  generators  for  f .  Let A g = gl - g g .  1 2 < 

Then 

by (4-185). But 

If Ag f - 0 (4-212) and (4-213) would imply (A, C) is not observable by 

v- 1 the s a m e  argument used to  show CA g f - 0. Therefore,  Ag = 0 and - 

which establishes uniqueness of g. This completes the proof of 

Theorem 4.4. 

Theorem 4 .1  follows quite simply f rom Theorems 4 .2 ,  

4.3, and 4.4. By Theorem 4 .4  obs ervability of the pa i r  (A, @) is 

sufficient to  guarantee existence of the maximal  generator,  which by 



Theorerras 4.2 and 4.3 makes it possible to satisfy both conditions (1) 

aad ( 2 )  cf detectability. Moreover, the observability of (A,  C )  is 

necessary in order to satisfy condition (2).  This follows from Lemma 4.4. 

The following observations a r e  made to reemphasize 

several  important points and to highlight some additional facts which 

a r z  of er terest . 
1) For a given observable pair (A, C) each n-vector f 

has  one and  only one detection space, detection order,  and maximal 

generator., Moreover, if A is replaced by A "  = [ A  - D"C] for arbitrary 

D" (with appropriate dimension), the detection space, the detection order,  

and maximal generator for f remain invariant. This property can be of 

considerable value in determining the detection order and maximal 

penerator of a vector. As will be seen later,  when A and C have a 
0 

certarn standard form, it is a simple matter to choose a D" which 

p r ~ d u e e i ;  an A "  with all elements zero or  one, thus making computations 

=ueh simpler.  

It should be noted also that the developments in this 

seciion :remain valid under a coordinate transformation of the state 

s?ace. Therefore, the detection order of f i s  invariant under a 

coordinsi.te transformation. The detection space and maximal generator 

zsansfosm in the same way a s  f .  

2 )  Theorem 4.2 states that in order to be a detector gain 

D must be  a solution of (4-113) for  some detection generator. By con- 

straining D to be a solution (4-1131, (n - q ' )  = u eigenvalues of [ A  - DC] 

are completely fixed. Of these, k eigenvalues can be arbitrarily 

specified by choice of the coefficients (pi;  i = 1. . . . . k) in (4-113). 
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If a nonmaximal detection generator is  used (i. e . ,  k < V) then (v - k) = 

(n - q ' - k) eigenvalues a r e  fixed without the control of the designer.  

In any case,  the remaining q f  eigenvalues can b e  specified arbitraril-y 

by choice of D ' in the general  solution of (4-113). 

3) All  detection generators  f o r  f (of a l l  o rde r s  up to  the 

maximal) lie in the detection space  of f .  This follows f rom the fact, 

established in the proof of Theorem 4.3, that c ' K ~ A ~ ~  = - 0 fo r  all i 2 0 

and j = 0, . . ., k - 1 where g is a kth o r d e r  detection generator for f. 

In fac t ,  this  shows that a l l  the vectors { ~ j ~ ;  j = 0, . . . , k - 1) a r e  in  

the detection space  of f .  By the s a m e  reasoning used to  obtain (4- 198) 

f r o m  (4-185), it can be  shown that any kth order  detection generator 

sat isf ies  (4-198). 

It should a l so  be  noted that every n-vector contained in 

the detection space of f has  the s a m e  detection o rde r  and detection space 

a s  f .  Suppose f has  detection order  v a n d  g is its maximal  generator .  

Clearly,  g sat isf ies  14-80) and (4-81) with k = v. Let f 2  b e  any other 

vector in the detection space  of f .  Since the s e t  of vectors  ( ~ j ~ ;  

j  = 0 . . . v - 1) span  the detection space, f 2  can b e  expressed as  a 

l inear combination of these vectors .  Then, with the possible exceptica 

of magnitude, g sat isf ies  the requirements  to  be  a vth o rde r  detection 

generator  f o r  f This implies the detection o rde r  of f is  g rea te r  than 2 ' 2 

o r  equal to V .  Also, by the r e m a r k s  in the preceding paragraph, the 

j vec tors  {A g ;  j  = 0, . . . , v - 1) a l l  l ie in the detection space  of f2. 

Since these  vectors  span the detection space of f, one m a y  conclude 

that the detection space  of f i s  contained i,n the  detection space  of f2. 



This m a n s  f i s  contained in the detection space  of f2.  But by the above 

argument (with the ro l e s  of f and f2 reversed)  this  implies the detection 

order of f i s  grea ter  than o r  equal to  the detection o r d e r  of f and the 2' 

detection space  of f contains the  detection space  of f2.  Therefore,  one 

mast conclude that f and f2 have the s a m e  detection o rde r ,  and the i r  

detection spaces  coincide. 

4) Although observability of (A,  C) is  .necessary to  

satisfy condition (2) of detectability, it is not .necessary for  condition (1). 

A detector gai.n can always be  fou.nd provided f does not lie in the 

unobservable space  of C. This can b e  shown by employing a coordinate 

transformation s imi lar  to  that used in the proof of Lemma 4.4,  which 

t ransfo~bms A and C into the f o r m s  

- 
where (Al1, C ) is an observable pa i r .  Partitioning ?and 5 t o  conform 

1 

w i t h  A and 



it i s  easily sh0w.n f rom the fo rm of a a.nd that 

- n-l -- 
= c,[T,, .... ( a l l  - D,e,, f1 I 

- 
Theorem 4 .1  can be applied to  the observable pa i r  (Al1, C1) tc  show 

t h e r e  exists a 3 and thus a D, which sat isf ies  condition (1). If f lies 
1' 

in the unobservable space  of C, then the settled-out output e r r o r  is 

z e r o  fo r  any D. Lemma 4 .4  shows that if (A,  C) is not observable the17 

the re  will  be  a number of eigenvalues of [ A  - DC] which will  b l  equal  

to  those of A and which cannot be  changed by any D (specificalljr, the 

eigenvalues of in (4-215) ). Nothing can be  gained by accepting a 22 

weaker  control over the eigenvalues which can b e  changed. Therefore,  

the  observability condition can be  relaxed only if one is willing to  give 

up a l l  control over  a cer tain number of eigenvalues of A .  

5) It was suggested previously that it would be  desirable  

t o  ta i lor  the detection f i l ter  dynamics to  the dynamic characteri-stics 

of the dr ive vc(t). It is  of interest  therefore to  determine the  r e s u l t l ~ g  

e r r o r  dynamics when D is a detector gain. The Laplace t r ans fo rm is 

a convenient tool fo r  studying the settled-out output e r r o r .  Consider 

where  

Let D be  a solution of (4-113). The t r ans fe r  f r o m  VE(s) to  E t ( s )  i s  



knvar iarit under a coordinate transformation of the s ta te  space. Define 

a coord .nate transformation by the n X n matr ix  

where g is a kth order  detection generator for  f and Tf2 is  any 

n ?< (n - k) matr ix  which makes Tf nonsingular. Let 

w h e r e  



where  

Prernul t ip ly ing (4-228) b y  T;' y ie lds  

A l s o  

wi th  

b y  (4-80) and (4-118) for @f f - 0 .  Fina l ly ,  us ing  (4-110) 
n 

1 
f = Tf? = [Tfl, Tf2] = Tfl (4-233) 

wi th  



0 - (Is  - 

w h e r e  

for  Cf 9: - 10. For the general case of (4-108), 



k-P-1 + , k-p -2  + 

S S ... + (2 
H(s) = 

k-p-1 1 
k k-1 + 

(4-240) 
+ p k S  . a .  + p1 

The direction of E ' (s)  is, of course,  fixed and given by Cf o r  ( X P f .  

The magnitude of E r ( s )  can be  considered the output of a k-dimensional 

single-input, single-output linear sys tem with dynamics given by (4- 2381 

o r  (4-240). The significant fact t o  note he re  is  that whereas the  

denominator of R(s) -- the  poles of the sys tem -- a r e  under the  

complete control of the designer,  the numerator  -- the ze roes  of the 

sys tem -- ca.nnot be  al tered by any D.  Once a detection gelaerator is 

found, (4-113) can be solved t o  obtain a detector gain without kliowlng 

the coefficie,nts ai in (4-110) o r  (4-111). However, if t ime  allows 

it may b e  desirable  to  find these  coefficients and determine where  the 

ze roes  of the sys tem lie before deciding where  to  put the poles.  

6 )  The construction used in Theorem 4.4 to  show the 

existence of the maximal  generator  i s  a feasible method fo r  finding the 

maximal  generator for  f ,  because a l l  the quantities used in that con- 

s t ruct ion depend only on A ,  C, and f .  Note C '  and K a r e  defined i n  

t e r m s  of A ,  C, and f only. The mat r ix  N ' i s  constructed f rom M 9  

which in turn can be  defined in t e r m s  of C r  and K by (4-182). Therefore,  

M t  and N ' a lso  can be  constructed f r o m  A,  C,  and f. Appendix A 

descr ibes  an algorithm for  finding the  maximal  generator of a krec$csr. 

The algorithm is based on the construction in Theorem 4.4,  but is 

somewhat m o r e  direct .  



The resu l t s  of this section show that if (A, C) is  

~ S s e r v a b l e ,  any n-vector f in the s ta te  space  has a unique maximal  

detection generator,  which can b e  constructed f rom A ,  C, and f only. 

1s has not been proven, in general,  that f has detection generators  of 

orders Less than the maximal.  Lemma 4 . 2  proved only that a kth o rde r  

~ e t e e t i o n  generator must  exist if a detector gain D exists which sat isf ies  

the conditions of the lemma.  It was noted previously that the construc- 

tion used in that lemma i s  not an appropriate method fo r  finding a 

detec t ion  generator,  because pr ior  knowledge of D is assumed.  It is 

easily kerified, however, that f is a unique f i r s t  o rde r  detection 

generator f o r  itself. This suggests a tentative speculation that f has  a 

~rliqase detection generator  of every o rde r  f rom one up to  the maximal.  

7 )  There  is a duality relationship between these resu l t s  

on. detection and the design of linear s ta te  feedback control, which i s  

concerrled with the propert ies  of the mat r ix  (A + BE) with A and B given 

and  L to b e  selected. The dual significance of the resu l t s  in this 

section and later  sections in this chapter a r e  discussed in Chapter 6. 

The resu l t s  of this section deal  only with the detection 

OC a single event. One of the appealing features  of the detection f i l ter  

far the  case  of a fully measurable  s ta te  vector was  that a single f i l ter  

could provide a l l  types of event information. As  noted a t  the beginning 

o 3 e c t j o n  4.3,  this will  not b e  possible, in general,  when the s t a t e  

vector is only partially measurable .  The next th ree  sections consider 

the problem of detecting a number of events with a single f i l ter .  

Before proceeding to  the next section, a s imple example 

-wi l l  se.-ve to  i l lustrate some of the preceding r e m a r k s .  



Example E l :  

Suppose 

Note the (A,  C )  is an observable pair.  A s  noted in remark I ) ,  the m-axi- 

ma1 generator, detection order,  and detection space of f remain un- 

changed if A is replaced by A "  = A - D"C for any D". It is convenient 

to take 

since this yields the simple form 



and from the definition of C " 

Using A'' to  form K 

'Then 



and 

r k M r  = qr = 1 

The detection order  of f is 

Consider the three-dimensional s tate  space shown in 

Figure 4-1. Note that 

s o  the output vector 

4 is simply the projection of the s tate  vector x(t) on the (G2 - e3)- plane. 

F r o m  M r  it can be  seen that the detection space of f 

(the null space of M r )  is the - Q2)- plane. The maximal generator 

of f must be in this plane and in addition satisfy 



Figure  4-1. 

These two equations imply that 



Note that g  and Ag span the detection space of f,  as  illustrated in Figure 

4-2,  and 

Figure 4-2. 
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;%; i.6 be  a detector  gain f o r  f if it sa t i s f ies  

fcr arbi trary p and p2. F r o m  r e m a r k  5) and ( E l - 1 8 )  it is known that I 
if :a sa t i s f ies  ( E l - 2 0 )  the output e r r o r  t r ans fe r  function w i l l  be  

It poles of H(s)  a r e  des i red  a t  s = - 2  and s = -3, fo r  example, then 

The t r a n s f e r  i s  then 



To  produce th i s  t r ans fe r  the  f i r s t  column of D must  satisfy 

Then 

and 

- d12 

A - D C  = - d22  

5 - d 
3 2 

Mote that  af ter  constraining D to  sa t i s fy  (E l -20 ) ,  the  ent i re  second 

column of D i s  s t i l l  a rb i t r a ry .  The s a m e  resu l t  i s  obtained if Lemma 

4 .3  is used to  obtain a solution of ( E l - 2 0 ) .  In that  c a s e  



and 

A - D C  = 

w h e r e  

i s  arb it;-.ary. 

Two eigenvalues of (A - DC) a r e  s = - 2  and s = -3 by virtue 

of the choice of p and p2. F r o m  the block diagonal form of (A - DC) in 
1 

(331-28) it is easily seen that the third eigenvalue is (5 - dg2),  s o  it can 

be arb i t ra r i ly  specified by choice of d 32 ' Therefore,  a l l  three eigen- 

values of (A - DC) can be  specified. 

This will  not be  the case  if a nsnmaximal detection 

generabos i s  used to  find a detector gain. Note that f i s  a f i r s t  o rder  

detection generator for  itself. Hence, a detector gain for  f can b e  

f x n d  bgr solving 

DCf = plf + Af (El-32)  

This w i l l  yield an e r r o r  t ransfer  of 



Equation (E l -  32) yields 

Then 

and 

0 
3p1 - d ~ 2  

A - D C  = 1 -p1+3 - d22 

The eigenvalues of (A - DC) a r e  given by the roots  of 

Two eigenvalues of (A - DC) a r e  s = -pl and s = 5 - dS2. and can be 

arb i t ra r i ly  specified by choice of p and d g Z .  However, the t h i r d  1 

eigenvalue of (A - DC) i s  always s = 3. This eigenvalue is a u t ~ ~ m a t i c ~ l l j ~  



determined when D is constrained to  sat isfy (El-32),  and it cannot be  

al tered by any choice of p dI2. d22J o r  d32. This is  an example of 

the  uncontrolled eigenvalues which resul t  when a nonmaximal detection 

g e n e r a t ~ r  is  used to  solve for  a detector gain, a s  noted in r e m a r k  2) .  

In  this example the uncontrolled eigenvalue produces an unstable f i l ter ,  

but this  i s  not necessar i ly  always the case .  F o r  some other f the un- 

controll.ed eigenvalue may yield a stable f i l te r .  How ever ,  to  maintain 

control over  a l l  eige.nvalues of (A - DC), the maximal generator must  

be used in determining D.  

Consider again the mat r ix  (A - DC) in (El-28)  obtained 

with the use of the maximal  generator .  Even af ter  specifying the third 

rigenvalue of (A - DC) by choice of d32, the re  is  s t i l l  freedom left 

m the choice of d12 and dZ2. One might ask  if this  freedom can be  

used to  make D a detector gain for  a second vector, fa ,  a s  well  a s  for  f .  

In this  case  the answer to  that question is yes.  F i r s t ,  assume f 2  l ies 

ir the detection space of f -- the ( - s2)  plane. Then 

fc r  SOIT e s c a l a r s  a, and Q C ~ ~ ,  and it is  easily shown that a detector 21 

gain for. f ,  determined with the use  of the maximal  generator g, is  a 

deteetcp.~ gain fo r  f 2  a s  well. However, the output e r r o r  direction 

cannot iiistinguish between events associated with f and f2,  because 

s o  the output e r r o r  direction is the s a m e  for  both f and f Some 2 ' 



possible methods for distinguishing such events a r e  discussed later .  

As a mat ter  of interest ,  the e r r o r  t ransfer  function fo r  f2  in -rhe 

detection space of f i s  

Q! 2 1 s + -- 
- 1 

= Cf2 - "Y22s $- @2l 

0 (S + 2) (s + 3) 

(E 1-40) 

When f l ies  in the detection space of f ,  the freedom in the choice of 2 

d and d22 i s  not necessary to obtain a detector gain for both f and f,. 12 L 

A 4 Now suppose f 2  does not lie in the ( e l  - e2)  plane. 

Suppose, for example, 

It will  be found for  this example that the detection order  of f2 (and.  in 

fact ,  of any vector not in  the (sl - B2) plane) is v2 = 1. This means 

that the maximal  generator for  f2  i s  f 2 .  To be a detector gain for f 2 ,  

D must  satisfy 



;- a r b ~ t r a r y  p 2 1 '  The third eigenvalue of (A - DC) wil l  then be  

j z -  P2I' Let  

T-een (EP-42)  yields 

Se ibs t i t~ t ing  (El -26) into this equation yields 

0 -6 -14 

G = A - D C  = - 3 

-4 

7t FQ easily verified that for  f 



and for  f 2  

E (s) = c [IS - GI f 2  Vets) 

s o  D given by ( E l  -46) is a detector gain for  both f and f 2 .  The 

settled-out output e r r o r  produced by the event associated with f a lways  

l ies  in the direction [:I in the output space.  The event associated 

with f 2  produces a settled-out output e r r o r  lying in the direction 

In addition to making D a detector gain for  f2 ,  it was 

possible to specify a l l  th ree  eigenvalues of (A - DC). Unfortunately, 

this  is not always possible. Consider what happens when D is constrained 

to  b e  a detector gain fo r  f2 given by (El-41) and f1 given by 

The detection o rde r  of f is v = 1, and f is the maximal  gener t tor  1 1 1 

A detector gain for  f l  must  satisfy 



f o r  arbis : rary p 
11' 

This  together with Equation (El-42)  fo r  a detector 

gain f o r  f 2  gives 

which has the unique solution 

Then 

A - D C  = 

( E l -  53) 

The D given by (El -53)  is  a detector gain fo r  both f and f The 1 2 ' 

eigenvalues of (A - DC) a r e  given by the  roo ts  of 

1s - (A - DC) = (s2 + (pZ1 - 2)s  - 2pal (S + pl l )  

= 0 ( E l  - 54) 

T v ~ s  eigenvalues of (A - DC) can b e  specified by choice of p and p 11 21 ' 

However, the third  eigenvalue is always s  = 2 r ega rd l e s s  of the choice 



f o r  p l l  and p21. This eigenvalue is automatically determined when  

D is constrained to b e  a detector gain for  both f l  and f 2 .  In this 

example the uncontrolled eigenvalue produces an unstable f i l te r .  

This implies that it is not possible to  detect both f l  and f 2  with 1 

single f i l ter .  It is necessary to use two separa te  f i l ters  -- one for f y  

and another for  f 2 .  

The uncontrolled eigenvalues do not always cause 

instability. If, for example, instead of (El -41)  f i  is 

then the detector gain for  f and f2 is 1 

and 

In this  case  the uncontrolled eigenvalue of (A - DC) is s = - 2 .  If a pole 

a t  s = -2 yields an acceptable sett l ing t ime for  the f i l te r ,  then f l  and f 
2 

can b e  detected by a single fi l ter with a detector gain given by (E l -56 ) .  

The next th ree  sections investigate the problem of detecting a number 

of events with a single f i l ter .  



Consider a se t  of r n-vectors If1, . . . , f associated 

with a s a t  of r events. The problem considered he re  is,  given such a 

set, t o  cletermine if  it i s  possible to  detect a l l  vectors  in the s e t  with a 

single detection f i l te r .  

Definition 4.8.  The vectors  I f ls  . . . , f r )  a r e  defined 

to  be - mutually detectable if t he re  exists a D which sat isf ies  the 

conditions of Definition 4.2 for  a l l  the fi, i = 1, . . . , r .  

A n  important special  case  of this problem is encountered 

I I when the vectors  a r e  output separable" a s  defined below. 

Defi,nition 4 .9 .  The vectors  {El, . . . , fr} a r e  defined 

to be - output separable  if 

w h e r e  I' is  an n X r ma t r ix  given by 

wi th  p .  fo r  each i defined by 
L 

Note that (4-241) implies r ( m where  C is m X n. This definition 

is motivated by the following observation. Suppose two vectors  f and 1 
'-b are not output separable .  Then r k  C F  = 1 and CA" f1 and CA 

f 2  2 

lie in t h e  s a m e  direction in the output space.  This means that even if 



a D can be found which is a detector gain fo r  both f l  and f2 the 13utpvrt 

e r r o r  for  both events will  lie in the same  direction. Thus the output 

e r r o r  direction will  not separa te  these two events. More will  be said 

about nonseparable vectors  at  the end of this section. 

The next theorem provides a tes t  for mutual detecda- 

bility of output separable  vectors .  Before stating the theorem, some 

prel iminary r e su l t s  and definitions a r e  necessary.  By Theorenl 4 .2 

a detector gain fo r  the vectors  {f . . . , f rJ  must  satisfy a se t  of r 1' 

equations of the form 

for i = 1,  r (4- 244) 

th where gi is  a k i  o rde r  detection generator f o r  f . .  Using the form 0: 
1 

(4-121) this  se t  of equations can b e  written a s  a single ma t r ix  equation1 

DCF = Qd 

where F i s  defined by (4-242) a.nd 

w idh 

for  i =  1, ..., r (4- 247) 

When the f i  a r e  mutually separable  (4-245) always has a solution. If 

D is  a solution of (4-244) each gi generates a cyclic subspace of dimension 



ki w i t h  respec t  to (A - DC). The eigenvalues associated with each of 

these invariant subspaces can be  specified, k. at  a t ime,  by choice of 
1 

t he  eoeff~cients  { p . . ;  j = 1, . . . . k i ;  i = 1. . . . , r). The fact that 
1 J 

the eigenvalues for each invariant subspace can be specified inde- 

pendently of the remaining subspaces implies that these subspaces a r e  

a l l  nonixersect ing.  This is verified independently by the following 
I 

l emma.  

Lemma 4.5.  Let I f l ,  . . . , fr) be a se t  of output 

separable vectors .  If, for each i ,  g. L is a kith order  detection 
k, -1 
1 generator for  f then the (k. + . . . + k ) vectors  {gl,  . . . , A 

i' L r 81, g25 
k -1 r 

..., A gr] a r e  a l l  linearly independent. 

Proof:  

Suppose the above vectors  a r e  linearly dependent. Then 

f o r  some s e t  of sca la r s  {oi j ;  j = 1, . . . , ki , i = 1. . } not a l l  

ze ro ,  

Premulthplying this equation by C and using the propert ies  of a detection 

generatcr  gives 

But the vectors  {CA ""11 p r  
f ,  . . . , A f r a r e  linearly independent 



because the f .  a r e  output separable.  Therefore,  (4-249) implies 
L 

'iki = 0 fo r  i =  1, . * . ,  r (4-250) 

Premultiplying (4-248) by CA and using (4-250) 

which implies 

This procedure can b e  continued until a l l  the oij a r e  shown tb  be zero. 
k, -1 

It must  therefore b e  concluded that the vectors  {g . . . , A 1 

1' g y  g2' kr- 1 
..., A gr} a r e  a l l  l inearly independent. This proves the lemma. 

Lemma 4.3 gives the general solution of (4-245) as  

When this  D is  put into (A - DC) the resul t  i s  A - DC = A ' - D T ' ,  

where  

and 

Equation (4-111) for  each f .  can b e  used to  obtain an expressiorl for A 
1 

corresponding to (4-1 69), 



pi  The expression analogous to  (4-122) for  each A f .  is 
I. 

Premultiplying this equation by A and substituting into (4-258) yields 

By the same development used to  obtain (4-182) it can be  shown that 

The foITo~ring definition is a generalization of the definition of the 

d e k c t i o n  o rde r  for  a single vector.  



Definition 4.10. The dimension of the null space of 

M ' ,  (n - r k  M '  ), i s  defined to  be  the group detection o rde r  of the se t  

{ f l ,  .. - >  fr]. 

A necessary and sufficient condition for  mutual detecta- 

bility can now be  presented. 

Theorem 4.5. The output separable  vectors {:f a as fr] 1' 

a r e  mutually detectable if and only if the sum of the individual detection 

o r d e r s  of the f i  is equal to  the group detection order .  

Proof: 

Let M L K ,  and C '  be  defined by (4-261). (4-2571, and  

(4-255). The group detection order  of { f l y  . . . . f,] i s  (n - q ' l  where 

q t  = r k  M t  . Let ui be  the detection o rde r  of fi. If the maximal  

generator for  each f i  is used in Equation (4-245) fo r  D then (V + . . . + ur) 
3 

eigenvalues of (A - DC) can be  specified, vi at  a t ime,  by the iselection 

of the coefficients p . .  . An additional q h i g e n v a l u e s  can be  arb i t ra r i ly  
1.l 

specified by the choice of D ' in (4-253). The total  number of eigen- 

values which can b e  almost a rb i t ra r i ly  specified is therefore 

(9 '  4- v1 + . . . + vr) This i s  the maximum number of eigenva iues 

which can be  specified while constraining D to  be a detector gain for 

a l l  the fi .  Condition (2) of detectability will  be  satisfied if and only if 

q'+ v + ... + v = n ,  o r  
1 r 

This  completes the proof. 

W h e n ( q r +  v l +  ... + v ) <  n, there  a r e  n - ( q f  + u + . . .  r P 
. . . + v ) eigenvalues over which the designer has  no control af ter  D i s  r 



cogstrained to  b e  a solution of (4-245). It wi l l  b e  shown in Section 4.3 .4  

thai, these  uncontrolled eigenvalues depend only on A, C, and F. They 

do not depend on the coefficients p . .  o r  D '  in (4-253). Therefore ,  it 
13 

is not possible t o  gain even par t ia l  control  over  these  eigenvalues by 

relaxing control  over  the  other  (q ' + v1 + . . . + v ) eigenvalues. As  in r 

the c a s e  of a single event, nothing i s  gained by relaxing condition (2) 

unless o r e  i s  willing to  accept the uncontrolled eigenvalues which 

r e su l t  when (q r  + v l  + ... + v ) < n. This  m a y b e  desirable  if the 
r 

uncontrol.led eigenvalues a r e  such that they do not adversely affect the  

dynamic behavior of the  detection f i l t e r .  Identifying the uncontrolled 

eigenvalties in the ca se  of nonmutually detectable vectors  is discussed 

in Sectiora 4. 3 . 4 .  

Example E l  a t  the end of the previous section i l lus t ra tes  

the above r e m a r k s .  Each  pa i r  of event vec tors  considered in that 

example has  a group detection o rde r  of th ree ,  because in every c a s e  

the C' defined by (4-255) is a z e r o  mat r ix ,  which means  that M '  given 

Sy (4-261.) i s  a lso a z e r o  m a t r i x  with rank ze ro .  F o r  the f i r s t  pa i r  of 

vectors (f  f 2 )  given by (El-3)  and (El-41) ,  the  s u m  of the  individual 
3 

detection o r d e r s  is v + v = 2 + 1 = 3, which is equal t o  the  group 2 

detection o rde r .  A s  shown in the example,  a l l  eigenvalues of (A - DC) 

ear: be specified while constraining D t o  be a detector gain fo r  both f and f 2 .  

For the second pa i r  i f l ,  f2] given by (El-50)  and (El-41) ,  the  s u m  of 

the individual detection o r d e r s  i s  only vl + V 2  = 1 + 1 = 2, and a s  (El -54)  

ver i f ies ,  one eigenvalue of (A - DC) is automatically fixed a t  s = 2 when 

D is constrained to  b e  a detector gain fo r  both f and f2 .  F o r  the  third  

pair  {f f2} given by (El-50)  and ( E l -  55), the  s u m  of the  individual 1' 



detection o rde r s  is again only two. But in th is  case  the uncontrolked 

eigenvalue is s = -2 ,  s o  it is  possible to  obtain a s table  detection f i l ter  

which detects both f l  and f 2  in spite of the fact that these two vxtors 

a r e  not mutually detectable. 

Results on the mutual detectability of nonseparable 

vectors  a r e  iucomplete, but a few useful facts  a r e  available. - I:! a 

number of vectors  have identical detection spaces,  then a detection 

f i l t e r  for  one will  be a detection f i l ter  for  all.  Since the e r r o r  signal 

for  a l l  the vectors  will  l ie in the s a m e  direction in the output space, 

the output e r r o r  direction will  not distinguish betwee.n the events 

associated with these vectors .  However, the e r r o r  magnitude inay 

provide additional distinguishing information. This special  c a s e  of 

nons eparable vectors  is  important in the detection of dynamic changes 

and i s  discussed in m o r e  detail  in Section 4.3.6. F o r  the general case  

of nonseparable vectors Equation (4-245) for  D may o r  may not have a 

solution. A necessary condition fo r  it to  be  a consistent mat r ix  

equation i s  that 

Each column wdi in Qd is  in a subspace spanned by the vector:; 

j {A gi; j = 0 ,  1, . . . . k .  This subspace contains the detection space 

of f i  and can be  one dimension l a rge r  because of the presence cuf A ki &Ti " 

Condition (4-263) implies that these subspaces cannot a l l  be  inciependent 

because if they were ,  r k  Qd would b e  equal to  r.  Since Qd depends o n  

the coefficients p. ., it appears  that (4-263) imposes some  rest:rictions 
13 



o n  these coefficients. It is not c lear  a t  this  point what restr ic t ions,  if 

any, this places on the specification of eigenvalues. 

It is possible to  show that if (A, C) i s  observable, then D 

cannot be a detector gain fo r  two nonseparable vectors unless their  

detection spaces coincide. Let f l  and f2  be nonseparable. Assume for  

simplicity that Cfl # - 0. (The same  development i s  valid fo r  the 

genera l  case given by (4-243).) Since f and f a r e  nonseparable 1 2 

This implies that the m-vectors  Cfl and Cf2 have the s a m e  direction. 

Suppose I1 i s  a detector gain for  both f l  and f2 .  Then by Lemma 4 .1  

w h e r e  

n- 1 
Wf2 = [f,, (A - DC)f2, . . . , (A - DC) f 2 ]  

(4-268) 

By (4-26!i) the range space of C W f  is  one- dimensional and, in fact, 

coincides with the direction of Cfl (Cfl is the f i r s t  column of CWfI). 

Similarly,  the range space of CWf2 is one-dimensional and coincides 

wi th  the direction of CfZ Since Cfl and Cf2 have the s a m e  direction, 

the range spaces of CWfl and CWf2 must  coincide. Therefore 



Define 

Now form an n X k12 matr ix,  Wf12> whose col~lmns  consist of k12 

independent columns f rom [ w f l ,  Wf2] . Then the range space of Wf lZ 

coincides with the range space of [ w f l J  Wf21 . In  par t icular ,  f and I2 I 

a r e  both in the range space of WfI2. By virtue of (4-269) 

The development of Lemma 4.2 can be  applied to W t o  cons1:ruct f12 

an  n-vector g such that 

The s e t  of vectors  { A ~ ~ ;  j = 0> . . . , k - 1  span the range space of 

WfI2. Therefore,  both f1 and f2 can b e  expressed a s  l inear  combina- 

t ions of these vectors .  This means that g, with an appropriate adjust- 

ment  in magnitude, can b e  made a k 12 th o r d e r  detection geoerator for 

either f1 o r  f a .  Let g be  a detection generator  fo r  f By r e m a r k  33 1 ' 

a t  the end of Section 4.3.1, the vectors { ~ j ~ ;  j = 0, . . . , k12-1) a r e  

contained in the detection space  of f Then f 2  must  be  contair.ed in the 1 ' 

detection space of f Again by r e m a r k  3) this  implies the dedc?ction 1 ' 



space  of f" and f coincide. This  resul t  does not generalize to s e t s  of 1 2 

more than two nonseparable vectors.  

Theorem 4.5 offers only a pass-fail  type of tes t  for  

mutual detectability. If the vectors in a given se t  a r e  found to  be not 

a l l  mutually detectable, there  is no way to  discover which vectors  a r e  

mutually detectable except by repeated application of Theorem 4.5 to  

ail subsets  of vectors in the original s e t .  It would be  desirable to  have 

a systematic way of forming subsets  of vectors  which a r e  mutually 

deteetabls. The next section i s  addressed t o  this  problem. 

4 . 3 . 3  Constructing Sets of Mutually Detectable Vectors 

This  section deals with the following problem. Given a 

set of output separable  vectors  If1, . . . , fr] which a r e  not a l l  mutually 

detectable, determine which vectors can b e  removed f rom the se t  t o  

leave a subset whose members  a r e  a l l  mutually detectable. Each fi  has  

a detection space of dimension vi, the detection o rde r  of fi. It will  be  

shown that each of these detection spaces  i s  an  invariant subspace with 

respect  to  K given by (4-257) and is  contained in the null space of &I' 

given by (4-261). Since the f .  a r e  output separable ,  Lemma 4 .5  
1 

guarantees that the detection spaces a r e  a l l  nonintersecting. Together 

they  make up a subspace of dimension (V + . . . + vr) contained in the 
1 

(n - q')-dimensional null space of M ' ( q r  = r k  M ' ) .  When the f i  a r e  not 

a l l  mutually detectable (n - q t )  > (vl + . . . + vr) and it is possible to  

def ine  an "excess" subspace of dimension 

which is  contained in the null space of M '  and does not intersect  any of 



the  detection spaces .  The p rec i se  definition of this space  wil l  b e  

presented short ly .  I ts  spec ia l  p roper t ies  and relationship to  the  

detection spaces  a r e  of cen t r a l  concern in the investigation of t he  

problem stated above. 

F i r s t  it wi l l  be  verified that t he  detection space  for  each 

f .  is an  invariant subspace with respec t  t o  K and i s  in the  null space  of 
1 

M r .  Let gi be  the maximal  generator  for  fi. Then 

S imi la r ly  

C ' K A ~  gi = c ' A ~ "  gi - c'AF[ ( C F ) ~ C F ]  - l ( ~ ~ ) T ~ ~ j  gi = - 0 

(4-2917) 

f o r  j = 0, 1, . . ., V.-2 and with (4-259) 
1 

v -1 
"i  p i  v.-2 

C'KA i 
= c'K[A f i -  ailA g i -  ... - ai, vi-pi-1 14 gi! 1 

p i  
= CrKA f i  = - 0 (4-278) 

I-(i s ince  KA f i  = - 0. This  development can be  repeated any number  of 



tilTes t o  show that 

c t $ ~ j g  i = - o 

f o r  j = 0 ,  1, . . ., vi -1  and a l l  integers I 2 0. Then 

j M r A  gi = 
0 fo r  j = 0, ..., V.-1 and i = 1, ..., r - 1 

(4-280) 

j which  shows that the  bas i s  vectors  {A gi: j = 0, . . . , vi-1) fo r  each 

detection space  a l l  l i e  in the  null space  of M r .  F r o m  (4-80) and the 

form of K in (4-257) i s  follows that 

K' gi = ~j g. f o r  j = 0, ..., vi-I 
1 (4-281) 

so { ~ j  gi ;  j = 0, . . . , vi-1) f o r m  a b a s i s  f o r  the  detection space  of fi. 

Substituting (4-281) into (4-159) 

(4-282) 

p i  
PrernuEtiplying this  equation by K and recall ing KA f i  = - 0 yields 

which shc~ws that  gi generates  an  vi-dimensional cyclic subspace with 

respect to K. F o r  each i define an n X vi ma t r ix  



Then using (4-2839 

V 

KW 
i 

= [JXgi, ..., K gi] = W . POli 44-28 5) 
gi gl 

where Poli is an V .  X V. matr ix  of the fo rm 
1 1 

Now let the  se t  of n-vectors {zei. . . . , z } be a basis 
eke 

for  the excess subspace mentioned ea r l i e r .  These vectors a r e  Binearly 

independent of each other and of the basis  vectors for the detection 
v, -1 

space of the f i .  The complete se t  of vectors {gl ,  . . . , A 
1 g,, 

11 - 1 
Y I 

..., A r 
gr '  'el' 

. . . , z } forms a basis  for  the null space of TuJ' . 
eke 

Define the n X ke matr ix  

Since the zei a r e  in the null space of M '  

and 

M t Z e  = - 0 

~ 1 ~ j - l  ze = - o for  a l l  j 21 



W i t h  (4-255)  th i s  gives 

where the Y . .  a r e  1 X ke row vec tors  and 
1J 

The basis vec tors  {z  . . . , z ] a r e  t o  b e  chosen s o  that e 1' eke 

i j  
= 0 ,  f o r  j = 1, ..., V - i 

It mus t  now b e  demonstrated that  th is  is, in fact ,  

possible. Let  {z;, . . . , z ' 1 be  any se t  of independent vec tors  which 
ke 

together with the  s e t  { A ~  ; j = 0, . . . . V -  1 ; i = 1, . . . . r} f o r m  a 
g i 1 

basis f o r t h e  n u l l s p a c e o f  M r .  Define 

A n  equation analogous t o  (4-290) can b e  wri t ten fo r  Z ' 



Let 

where  the Ji  a r e  v .  X ke ma t r i ces  chosen so  that 
1 

3. j -1 - Ji - - yJ for  j = 1, ..., 
1 cri i (4-297) 

l j  

with Pai defined by (4-286) and ai a 1 X vi unit row vector 

A 
u = [ o ,  ..., 0, 11 
i (4-298) 

The se t  of equations (4-297) defines Ji uniquely a s  can b e  seen  when 

they a r e  combined into a single mat r ix  equation 

The v i  X v i  mat r ix  on the  left has the triangular form 



and is c lear ly  nonsingular (o denotes possible nonzero elements) .  With 

Yi SO defined 

Noting that 

by repes.ted application of (4- 285) and a l so  

Equatioal (4-301) then becomes 



Comparing this with (4-290) one may conclude that 

y.. = 
j-1 

y! + ui Psi Ji 
13 ~j 

p i  s ince the CA f i  a r e  l inearly independent. Then (4-292) follows 

directly f rom (4-297). 

Equation (4-285) shows that the range space  of ezch W 
$i 

i s  an invariant space  with respect  t o  K. The range space  of Ze is  not 

an  invariant space  itself, but i s  a t  least  contained in the null space of 

M ', which is  an invariant space.  Therefore KZe is also in the nul l  

space  of M t  and can b e  expressed a s  a linear combination of Ze  and 

the Wgi, s ince the combined range spaces  of these ma t r i ces  coincide 

with the null space  of M '  . So 

f o r  some k X ke ma t r ix  A and some vi  X ke ma t r i ces  Then e i '  



Comparing this expression with (4-290) with ( j  - 1) replaced by j,  one 

may conclude  that 

This  along with (4-292) implies that 

7-3e r o w  vectors  y i ,  u ,+l  wi l l  b e  r e f e r r e d  to  frequently in what follows, 
L 

so s t  w i l l  be convenient t o  introduce a s imp le r  notation fo r  them 

W r i t i n g  l(4-309) in ma t r ix  fo rm,  

Notrng the t r iangular  fo rm of (4-309) th i s  equation i s  easily solved f o r  

hi to yield 



Then (4-306) reduces to 

The ke X ke matrix A and the 1 X ke row vector Bi associated with each 

f .  is sufficient to determine which vectors in the se t  can be removed to  
1 

leave all  the remaining vectors mutually detectable. The following 

theorem is the basis for that determination. 

Theorem 4.6 .  Let Ze.A . and the €ii for each I. L be 

defined a s  above. Assume 1 vectors {f . . . . , f i  } a r e  removed from 
1 I 

the original se t  of r. Ifl, . . . . fr}. Then for the remaining (r -- P ) 

vectors the new excess subspace has dimension 

where O is an I X k matrix whose rows a r e  the €Ii corresponding to 
e 

the f i  which were removed 

Furthermore, a basis for the new excess subspace is formed by the se t  

of vectors 



i 
= Z f l  . for i = 1, ..., k e e l  (4-316) 

w h e r e  the s e t  of ke-vectors ,  . . . , 6 ek 1 is any bas i s  for the null 

space of 

The following corollary demonstrates the effect of 

removing a single vector f rom the original s e t .  

Corollary 4.6.1. If f. is removed f r o m  the se t  of 
L 

vectors, then the dimension of the excess  subspace will  b e  reduced by 

a n  amount equal to 

Proof: 

Simply take O = Bi in Theorem 4.6.  The next corollary 

pr-ovides an answer to  the problem stated at  the beginning of this  section. 

Corollary 4.6.2.  The vectors  remaining af ter  the 

removal of B vectors  {f , . . . , f .  ) a r e  mutually detectable if and 
1 la 

oinly if (11, O )  is an observable pa i r .  



Proof: 

The remaining vectors  a r e  mutually detectable if and 

only if the new excess subspace has z e r o  dimension. By Theorem 4 . 6  

this  w i l l b e  the case  if and only if 

which is the condition for  (A, 63) to  be  an observable pair .  

Proof of Theorem 4.6: 

F o r  convenience of notation, assume that the f i r s t  1 

vectors  a r e  removed from the original se t  to  leave {fi+l, . . . , f r }  a 

Define 

which a r e  analogous to  F ,  K,  C '  , and M '  for  the original s e t .  The 

1 6 1  



detection spaces of (f a+l' . . . , f r )  a r e  contained in the null space of 

' Th?se vectors a r e  mutually detectable if and only if the dimension M 2  

of this  null space is exactly ( v ~ + ~ +  . . . + Vr). Suppose its dimension 

is larger  than this.  Then there will  exist some n-vector z in the null 

space of M i  which i s  independent of the detection spaces.  Any vectar  

in the null space of M i  is a lso in the null space of M I .  Moreover, M '  z 
2 

= - 0 if arld only if 

These two facts follow from the lemma below. 

Lemma 4.6. If C i  z = - 0 for  some n-vector z then 

and 

Proof:  

C ' z  = 0 - (4-324) 

Now 



where  

F r o m  the definitions of F and F2 

where E is defined a s  

E = (4- 329) 

'2 '] 
Then 

and thus 

Also 

= AZ - AF2EZ = AZ - AFE 

= Az - A F [ ( C F ) ~ C F ]  - + C F ) ~ C Z  = ~z (4-332) 

which completes the proof. 



Successive application of (4-323) to K ~ Z  and Kjz with 

j = 0, 1, . . . , n - 1 yields (4-322). The fact that z i s  in the null space 

of M '  fo'llows from (4-322) and (4-324). It i s  therefore possible to  

express z a s  

for  some ke-vector fie and Vi-vectors pi. With (4-290) and (4-302) 

'5. 
Because the f i  a r e  output separable ,  the vectors  {CA f i :  i = 1, . , . , r } 
a r e  linearly independent. (These vectors  make up the columns of CF 

I-li wh ich  has rank r . )  Equation (4-326) shows that if C; A f i  = - 0 then 

p i  CA f i  can be  expressed a s  a linear combination of the columns of CF2 ,  

p i  
o r  in other words a l inear combination of the vectors  { CA f i  ; 

L 

I-li i = n + 1, . . . , r) . But the vectors  {CA f i ;  i  = 1, . . . , 1 } a r e  



lJ i 
independent of the  vec tors  {CApi ; i = 1 .  , r So C$ A f i  2 fi 

f o r  i = 1, . . ., 8 . Consequently, 

Then (4-335) reduces  t o  

But f r o m  (4-332) C i ~ j - l  z = - 0 f o r  a l l  j 21. Therefore  

A j-1 
y i j  Pe + u i P a i  Pi = - 0 fo r  i =  1, .... 1  

p i  and for  a l l  j 2 1 ,  s ince  the  C;A fi  a r e  independent. By (4-292) 

th i s  reduces  t o  

which implies  



Pi = - 0 fo r  i = 1, 1 

by v i r tue  of (4-300). Then (4-338) becomes 

7 ijPe = 0 fo r  i = 1 ,  ..., P and j L v i + l  

Define 

Then  (4-342) c a n  b e  w r i t t e n  

SjPe = - 0 f o r  j > l  

Now fro-= (4-308) and (4-312) 

' i, j+1 = y . .A  + €Ii 
13 

A j-1 a!. = u. P 
13 1 cri 

Repeated application of (4-345) s t a r t i ng  with j = v. + 1 and y i 3  u.+l = Bi 
1 

1 
yields the gene ra l  express ion 



fo r  a1 1 j 2 1. Using this expression in the definition of S j 

where 

Q . . . .  - 0 

. . 
0 

. . - 0  - c Y 1  
1 ,  vp+j 

Noti.ng that SI = O 

where 

I .  _ 0 - - - . . . . 0 - 

9 1 .  
A - 
.TQ - (4-351) 

Q2 

0 - 

QkeWl - - -Q2 - Ql - I 



Slow (4-344) f o r  j = 1, . . . , ke c a n  b e  w r i t t e n  

which is equivalent  to 

s i n c e  T' is nonsingular .  If (4-353) is sa t i s f i ed ,  then S .P = 0 f o r  a l l  12 J e  - 
3 ) l b e c a u s e  

fo r  any j 2 1. With (4-341), Equation (4-333) r e d u c e s  to  



where  pe must  satisfy (4-353). The only constraint placed on z in 

a r r iv ing  a t  (4-355) was  that it lie in the null space of M i .  All  vectors  

in this  null space  can therefore be  expressed in the f o r m  of 14-355). 

Since the r k [ z e ,  wg ,  1+1, . . . , Wgr] = (ke + V1+l + . . . + Vr), the 

dimension of the  null space  of M i  is  simply the number of independent 

(ke + v ~ + ~  + . . . + vr)-vectors of the form 

where  pe must  sat isfy (4-353). The Pi (i = 1 + 1, . . . . r )  a r e  

unconstrained s o  the re  a r e  at  least  ( v ~ + ~  + . . . + Vr) such vectors .  

This  was expected because the detection spaces  of {fl+l, . . . , f r )  a r e  

known to  lie in the null space  of M i .  The number of additional 

independent vectors  in the null space  is the number of independent 

solutions of (4-353). This number is 

This,  then, is the dimension of the excess  subspace fo r  {fi+l, .. . fr) a 

Let {Pel, . . . , pek} b e  k independent solutions of (4-353). Define 



a nd 

w i t h  

z ' = ZePei fo r  i = 1, . . . , k e i  (4-358) 

The columns of Zb a r e  in the  fo rm of (4-355) (with the  Pi = - 0)  and a r e  

therefore  in the  null space  of M i .  Then by  Lemma 4.6 

(4- 359) 

Now the range  space  of Ye i s  an invariant subspace with respec t  t o  A 

because it coincides with the null space  of 

T h u s  

A y e  = YeA1 

for some k X k m a t r i x  A ' .  Note a lso that f o r  i = 1, . . . , I 



F o r  i = d  + 1, ..., r 

where  

Substituting (4-360), (4- 361) and (4-362) into (4-359) gives 

This  eguati0.n is analogous t o  (4-313). 

The  columns of ZL fo rm a bas is  for  the new excess 

subspace f o r  {fl+l, . . . , f } .  To s e e  this, f i r s t  note that the columns 

of 2; a r e  indeed independent of the detection spaces of {fi+l, . . , fr) 
since by (4-357) the range space of Z; is contained in the ra,nge space  

of Ze,  which by construction is  independent of a l l  the detection spaces.  

It was  noted ea r l i e r  that the columns of Z;I a r e  in the nu11 space  of Ma 

and therefore KZ; = K2Zk by Lemma 4.6. Since the null space  of M i  

is invariant with respec t  t o  K2, the range space of ~ ~ j - ~  Z ' i s  also in e 

null space  of M i  f o r  a l l  j 2 1, and 



Then 

Substituting (4-290) into this  equation yields 

Now the columns of Ye sat isfy  (4-353) which is  equivalent to  (4-342). 

Also y . .  = O f o r  j = 1, . . . , v s o  one may  conclude that 
LJ - i 

ijYe = 0 f o r  i = 1, ..., 1 - 

and fo r  a l l  j 2 1 

Then (4-367) reduces  t o  

The row vec tors  (y . Y e )  for  i = 14-1, . . . , r play the s a m e  r o l e  a s  the  
1J 

y . . for Llie or iginal  excess  subspace.  F r o m  (4-292) 
13 

y . . Y  = - 0 for  j = l ,  ..., v i (4-370) 
1-1 e 

s o  ZQ sa t i s f ies  the condition analogous to  (4-292) used to define the 

excess  s ubspace. This  completes the  proof of Theorem 4 .6 .  



Appendix B descr ibes  an  algorithm f o r  generating a basis  

for  the excess  subspace, plus the A ma t r ix  and the row vectors  e$ - -* i * 

Corollary 4 .6 .2  reduces the problem of coastructing a subset of 

mutually detectable vectors  to  the problem of finding a subset of' the 

row vectors Qi which fo rm a O such that (A, @) is an observable pa i r .  

At f i r s t  glance this  may s e e m  to be  only a pass-fai l  type t e s t  such as  

provided by Theorem 4.5 .  However, A and the Bi can provide additional 

i.nformation to  guide the choice of which vectors  to  remove from the 

original s e t .  Corollary 4.6.1,  for  example, can be  used to  ide.r~tify 

those vectors  whose removal  would achieve the greatest  reduction in 

the s i ze  of the excess  subspace. More information can b e  obtained 

f rom a systematic  analysis of A and the Bi  a s  will  b e  seen  in the next 

section. In addition to providing a way of analyzing the  problem of 

detecti.ng a se t  of vectors  with a single f i l ter ,  Theorem 4.6 has 

achieved a potentially significant reduction in the dimensionality of the 

problem. Mutual detectability a s  originally formulated in Section 4 . 3 . 3  

deals with an  n-dimensional vector space.  Theorem 4.6 reduces the 

problem to  considerations in a vector space  of dimension k which one e' 

might reasonably expect to be significantly sma l l e r  than n ( reca i l  

k = n-q-V - . . . e 1 - w r ) .  

4. 3 . 4  Detection of Nomutual ly  Detectable Vectors 

with a Single F i l t e r  

By definition, a se t  of vectors  which a r e  mutually detectable 

can be detected with a single f i l ter  while retaining control over a l l  the 

eigenvalues of (A - DC). If one encounters a s e t  of vectors  which a r e  

not a l l  mutually detectable, the r e su l t s  of the previous section can be 



used to  break  up this  s e t  into a group of two o r  m o r e  subsets ,  each of 

which i s  rnade up of only mutually detectable vectors .  One detection 

f ~ l t e r  can then be  designed for  each subset.  If this  i s  done, one need 

consider only the problem of designing a detection f i l ter  for  mutually 

detectable vectors .  However, if one allows the possibility of using a 

single f i l ter  for  nonmutually detectable vectors ,  it may b e  possible to  

reduce  the number of detect ion f i l te rs ,  s ince a potentially grea ter  

number of vectors  could be  assigned to each f i l ter .  

This  section investigates the problem of using a single 

dexect ion f i l ter  for  a se t  of output separable  but nonmutually detectable 

vectors. The resu l t s  of the last  two sections show that when this  i s  

attempted the resulting (A - DC) ma t r ix  will  have ke eigenvalues fixed 

wi thout  the control of the designer,  where ke is the dimension of the 

ex~cess subspace for  the se t  of vectors .  To decide if detection of the 

set w i t h  a single fi l ter i s  feasible,  one must  be able to identify these 

uncontrolled eigenvalues to  s e e  if the f i l ter  will  have satisfactory 

dynamics., It wil l  be shown in this section that these  eigenvalues a r e  

indeed un~ont ro l lab le  -- that they depend only on A ,  C ,  and F and a r e  

not influenced by the designer ' s  choice of the remaining (n - ke) 

eigenvaluas of (A - DC). Fur the r ,  they will  b e  shown to be equal to  

the eigenvalues of the ke X ke mat r ix  A introduced in the previous 

sec-i-ron, F r o m  8. it will  be  possible to determine which of the 
L 

uncontrolled eigenvalues a r e  eliminated by removing the corresponding 

f. f rom the original se t .  With this  information the designer can 
L 

eliminate specific undesirable eigenvalues by removing certain f i  f rom 

the set .  



Suppose D i s  chosen to  be a detector gain fo r  the se t  of 

output separable  vectors If1, . . . , fr) . Define an n X n coordinate 

transformation mat r ix  

where  Ze  and the W a r e  defined a s  in the Last section, and TErZ is 
% i 

any n X q t  ma t r ix  such that TF i s  nonsingular (q ' + ke + v l  + . . . + v r = n). 

Now by (4-115) 

v 
i 

(A - DC) Wgi = (A - DC)gi. . . . , (A - DC) gi 1 = WgiPi  

where 

From (4-290) and (4-292) with j = 1 

CZe = - 0 

(Note that V ,  the detection order  of fi, i s  always greater  than ze ro  

175 



because t h e  nul l  s p a c e  of M L  defined by (4-182) conta ins  f i  and t h e r e -  

fore has dimension g r e a t e r  than  o r  equal  t o  one . )  Then 

Wi th  34-373) and (4-376) 

- 
where the Gi,  r+2 a r e  defined by 

Prernul t ip ly ing (4-377) by T;' and compar ing  t h e  r e s u l t  with (4-372) 



Since and (A - DC) a r e  s imi lar ,  they have identical eigenvalues. 

F r o m  the block diagonal form of one can conclude that the eigenvalues 

of (A - DC) a r e  equal to the combined eigenvalues of A ,  the Pi ,  and 
- 
Gr+2,r+2 Recall f rom Section 4 . 3 . 3  that the construction of A depends 

only on A ,  C, and the detection spaces of the fi. It does not depend on 

the coefficients pij which appear in the Pi. Therefore,  the ke eigen- 

values of A,  which a r e  equal to ke eigenvalues of (A - DC), a r e  inde- 

pendent of the eigenvalues of the Pi. The eigenvalues of 8H2$,+2 are 

determined by the choice of D Y n  (4-253). By Lemma 4.4, D 1  does 

not influence the eigenvalues of the Pi o r  A .  This shows that the eigen- 

values of A a re ,  in fact,  the uncontrolled eigenvalues which resul t  when 

D is constrained to  be  a detector gain for the se t  of output separable,  

nomutual ly  detectable vectors.  

Consider Bi,  a s  defined in Section 4 . 3 . 3 ,  which is 

associated w ith one vector, fi, in the se t  {fl, . . . , f }  If that vector 

is removed from the se t ,  the new excess subspace will have dinlension 



Equation (4-350) means that 

and 

for same s e t  of sca la r s  {ael ,  . . . , a e,  ke-k . Moreover,  (ke - k) 

eigenvalues of A a r e  given by the roots  of the equation 

It w i l l  be shown that these  (ke - k) eigenvalues a r e  exactly the ones 

which  are: eliminated when f i  i s  removed f rom the original s e t .  

Removal of f .  r e su l t s  in a new excess subspace of 
1 

dirnensiola  k. The matr ix  A i s  replaced by the k X k mat r ix  A '  sa t i s -  

fying (4-360).  By the development a t  the  f i r s t  of this section it is known 

that the remaining uncontrolled eigenvalues a r e  the eigenvalues of A ' .  

Now define a k X ke coordinate transformation mat r ix  e 

w i t h  Ye given by (4-356) and Ty2 any k X k ma t r ix  which makes Ty e 

nons ingular . 



and 

By (4-360) 

where 

Premultiplying (4-387) by T: and comparing the resul t  with (4-385 

gives 

The eigenvalues of n, and thus of A ,  a r e  equal t o  the combined eigen- 

of At  and B22 .  The eigenvalues of A' remain after removal  of f . ,  s o  

the eigenvalues which a r e  eliminated a r e  the eigenvalues of H2!2 It 

must now be shown that these eigenvalues a r e  given by (4-383). 



9.- the definition of Ye and (4-353), e i~ ] 'Ye  = - 0 f o r  a l l  j > 0, s o  

w h e r e  

and also 

Then 

Since T is nonsingular, th i s  implies 
Y 

by (4-386). Postmultiplying (4-382) by Ty and using (4-392) yields 



Equations (4-394) and (4-395) prove that the eigenvalues of X Z Z  a r e  

given by the roots  of (4-383). This establishes the ear l ie r  claim that 

the eigenvalues given by (4-383) a r e  eliminated by removing f i  from the 

s e t  {fl, . . . , fr]  

F r o m  A one can determine the uncontrolled eigenualues. 

If some of these  a r e  found to  be  undesirable, the Bi will  identify that 

vector (o r  vectors) whose removal  will  eliminate those partieu1.a.r 

eigenvalues. The following example i l lustrates  the resul t  of this  and 

the previous sec t  ions. 

Example E2: 

S uppos e 

and the re  a r e  four eve.nt vectors 



(E2-  3) 
Sirce  Cfi # - 0 for i = 1 ,  2, 3,  4  the  matrix F defined by (4 -232)  is 

Then 

New replace A by the  simpler form 



which is obtained by taking the f i rs t ,  second, third, and fourah columns 

of D" equal to the f irst ,  third, fifth, and sixth columns of R re,speetively* 

Using A" to form K yields 

For  the full set  of event vectors, C '  defined by (4-255) 

becomes 

ct = c - CF[(CFI~CFI-~~CF~~C = c - c = - o 

(E2-8) 

and therefore M r  defined by (4-249) is 



Renee, the group detection order  of the se t  (f f f f ) is  six,  the 1' 2' 3' 4 

d imens ion  of the s ta te  space. When the resul t s  of Section 4.3.1 a r e  

applied to  each fi, it will  be found that the detection o rde r  i s  

v = 1 for  i = 1, 2, 3, 4 i (E2-10) 

and  each f .  is its own maximal generator.  The sum of the individual 
1 

detection o rde r s  is 

which means that the vectors {f f f f ) a r e  not mutually detectable 1' 2' 3' 4 

and the excess subspace has dimension 

To determine if it i s  necessary o r  desirable to  remove 

one or more  vectors from the set ,  A and €Ii w i l l  be generated with the 

algorithm presented in Appendix B. Since M" - 0, the reduction 

procedure applied to the rows of this mat r ix  produce no reductions. 

Tlne ter lr  inating matr ix  which resul t s  f rom processing M '  is simply the 

syr~metr ic, positive-definit e s tar t ing matr ix.  Let this mat r ix  be the 

6 X 6 identity matr ix  

According to Appendix B the reduction procedure now s t a r t s  with 1 

and is applied t o  the  rows of the matr ix  % defined by (B-2). 



Now ? defined by (B-5) is 

-4 

Recalling that $ = 1 for i = 1, 2, 3, 4, the MI  defined by (B-3) i s  

- 
and M2 defined by (B-4) is 

he 

The first reduction occurs at the f i r s t  sow in Id ' ,  



and 

Reductions also occur a t  each of the next th ree  rows, c2, cg ,  and c4. 

The posii.ive semi-  definite ma t r ix  which resu l t s  af ter  these  reductions 



This completes the reduction process applied to GI. The first r aw  of - 
M2 is clK = - 0, so w 5  = - O and O6 = a5. No reduction occurs al. this 

row. so c is terminated. The second row of M2 is 1 

Cr 

The third row of Ma is 



T h e n  

S C ~  the reduction process  is fully terminated. The two final nonzero 

auxiliary vectors needed t o  generate A and the Bi a r e  

U - 
These tvio vectors  occurred a t  rows c2K = c 2 K and c3K = c3K in M2.  

Tkescefo-re 

and 



Then from (B-28) 

From 

since 





The f i r s t ,  third,  fifth, and sixth rows of this vector equation a r e  

identically z e r o  and may b e  discarded. The second and fourth r o w s  

yield 

Note that the eigenvalues of h a r e  s = - 2  and s = 3. 

These a re . the  uncontrolled eigenvalues which (A - DC) will  have if D 

is  constrained to be  a detector gain fo r  a l l  four vectors  {f f f .  , f ) ., l J 2 j  3 4 

This h and the Bi given by (E2-34) to  (E2-37) yield the followinjj 

conclusions: 



1) Since = - 0, removing fl f rom the se t  of event vectors 

wr  L: slot reduce the excess  subspace. 

2 )  Since 

This means that removal  of f2  f r o m  the s e t  will  reduce the excess sub- 

space by one dimension. The eigenvalue s = -2 will  be  eliminated and 

t.le uncontrolled eigenvalue which will  remain fo r  the se t  {fl, f3, f 4 )  is 

3) Since 

the removal of f f rom -ths set will eliminate the excess subspace 3 

ect ~ re lg .  Therefore,  the vectors Ifl. f2,  f4) a r e  mutually detectable. 

4) Since 



This means that removal  of f 4  f rom the s e t  wil l  reduce the excess 

subspace by one dimension. The eigenvalue s = 3 will  be  eliminated, 

and the uncontrolled eigenvalue which will  remain  for  the s e t  jfl, f2 .  f3) 

is s = - 2 .  

5) From Corollary 4.6.2 it may be concluded that the 

following (nontrivial) subsets  of vectors  a r e  mutually detectable: 

(a) ifl. f2.  f41 

(b Any subset  of (a) 

( c )  If,. f31 
Detection of a l l  four event vectors  requi res  a minimum of two detection 

f i l te rs .  The s e t  Ifl, f2 ,  f,. f 4 )  can be subdivided into two subsets  of 

mutual ly detectable vectors .  A l l  the vectors in each such sub,set can 

be detected by one detection f i l ter .  The possible subdivisions a re :  

( i)  If,, f 2 .  f4} ; {f3 } 

(ii) Ifl, f3) ; I f Z ,  f41 
Although the vectors {fl. f 2 .  f,] a r e  not mutually detectable, they can 

a l l  b e  detected by a single stable detection f i l ter ,  s ince the uncontrolled 

eigenvalue is s = - 2 *  If this eigenvalue i s  acceptable, two additional 

subdivisions a r e  possible: 

( i i o  If,, f,, f,] ; {f41 

(iv) Ifl9 f,l ; 0 3 ,  f,1 
In c a s e  (iii) the detection f i l ter  for  {fl, f2 ,  f3) wil l  have the uncontrolled 

eigenvalue s = -2. In case  (iv) the detection f i l ter  for  {f2.. f,:> w i l l  

have the uncontrolled eigenvalue s = - 2 .  



4 . 3 . 5  Effector Fa i lu re  Information 

The resu l t s  of the previous four sections can be applied 

direct ly  Lo the design of f i l te rs  which detect effector fai lures .  F o r  the 

system described by (4-1) to  (4-3), fa i lure  of the ith effector i s  

associated with bi, the ith column of B. This bi  rep laces  the f i  in the 

previous sections a s  the vector associated with a particular event. The 

design of the detection f i l ter  proceeds a s  follows: 

I) F o r  each column vector bi in B = [bl.  . . . . b,] 

d e ~ e r m i n e  the maximal  generator with the algorithm of Appendix A. 

If two or m o r e  bi have the s a m e  detection space, then only one of those 

vectors need be considered in the remaining s teps.  Any detection 

filter for one such vector will  be a detection f i l ter  for  a l l  vectors  having 

the  same detection space. 

2 )  F o r m  F a s  defined by (4-242) with f i  replaced by bi. 

If rk C F  = r ,  the bi a r e  output separable .  If r k  CF  < r, subdivide the 

b, into taro o r  m o r e  subsets  s o  that each subset consists of output 
L 

separable vectors .  

3)  Generate the B i  and A for  each of the subsets  f rom 

s t ep  2 )  using the algorithm of Appendix B. If a A exists (i. e . ,  has  

nonzero dimension), identify the eigenvalues and decide if they a r e  

satIsSacL13ry. If not, use the resu l t s  of Section 4 .3 .4  to  subdivide that 

set  further s o  that the undesirable eigenvalues a r e  eliminated. 

4) A detector gain fo r  each subset of vectors f rom 

sxep 3 )  c a n  be  found by solving an equation of the fo rm of (4-245) with 

the pi. selected to  give the desired eigenvalues. If the subset has  
J 

f e w e r  vectors than r k  C, then the remaining eigenvalues of (A - DC) 



a r e  specified by choice of D \  Appendix A presents  a comvenient 

method for  doing this.  The resulting detection fil ter has a s tate  

equation 

i( t)  = (A - DC) z(t)  + Bud(t) + Dy(t) (4-396) 

Suppose a failure a s  modeled by (4-15) occurs in the i t h  

effector. The detection fil ter for that effector will  produce a settled- 

out output e r r o r  of 

where p is defined by condition (4-243) for  bi and i 

with Hbi(s) given by (4-240) for  f = bi. This resul t  follows from 

r e m a r k  5 )  a t  the end of Section 4.3.1. The failure can the.n be 

P i  identified by the fixed direction (CA bi) of the e r r o r  signal. 

If there  a r e  other detection f i l ters ,  they will also 

produce e r r o r  signals, but these e r r o r s  will not lie in a fixed direction 

fo r  a rb i t rary  n(t) a s  the e r r o r  given by (4-397) does. Note the qualifi- 

I! cation, for a rb i t rary  n(t)". F o r  any f i l ter  the re  always exists a 

specific n(t) which can make the e r r o r  lie in a fixed direction. An 

example which works for a l l  stable f i l ters  is n(t) = constant. Even 

with the qualification there  is still one possible exception to the above 

statement.  A detection f i l ter  gain D designed f o r  another se t  of vectors 



could, b;y coincidence, happen to be a detector gain fo r  the bi in (4-397). 

In that case  this f i l ter  a lso would produce a fixed direction output e r r o r .  

How ever, no confusion should resu l t ,  because to  interpret  the e r r o r  

signal f rom a detection f i l ter  one compares  i ts  direction with those 

directiorls f o r  which the fi l ter was designed. Even though the signal 

from another f i l ter  by coincidence lies in a fixed direction, that 

direction will  not match any direction f o r  which the f i l ter  was designed. 

This fact  is  assured  by the following observation. If there  is a 

p 3  detectiiotl f i l ter  designed for  another vector b .  for  which CA b .  has  
U :  

J 3 
L 

the  same direction a s  CA bi, but bi and b .  have different detection 
J 

spaces, then the r e m a r k s  a t  the end of Section 4.3.2 guarantee that the 

gain 14 for this second f i l ter  (for b . )  cannot be  a detector gain for  bi. 
3 

Therefoi-e, the e r r o r  signal f rom this  f i l ter  (resulting f rom a fai lure  

o: the ith effector) will  not Lie in a fixed direction fo r  a rb i t r a ry  n(t). 

If b. and b .  have the same  detection space,  they would 
1 J 

be  assigned to the same detection f i l ter  by the procedure suggested in 

step 1). A s  mentioned in Section 4.3.2, events associated with such 

vectors cannot be differentiated on the basis  of e r r o r  direction alone. 

Error magnitude may provide additional information if something is 

known about the dynamic character is t ics  of such fai lures .  If, for  

example, the n(t) for  different events is expected to  have different 

frequency spectra ,  then the frequency spectrum of the e r r o r  magnitude 

may ide~n.lify the most  likely event. Chapter 5 discusses  the problem 

of identifying effector fai lures  f rom detect ion f i l ter  e r r o r  signals when 

those signals a r e  corrupted by e r r o r s  caused by other simultaneous 

events cr noise disturbances. 



4.3.6 Plant Dynamics Information 

F o r  reasons  discussed in Section 4.2.2,  it will  be 

convenie.nt t o  model the plant dynamics given by (4- 1) to (4-3) in a form 

fo r  which a l l  dynamics changes appear a s  changes in A o r  B, leaving C 

in fixed and s imple fo rm.  Additional considerations will  suggest a 

s tandard f o r m  for  A a s  well. F o r  the resulting plant description it w i l l  

b e  especially s imple t o  design a detection f i l ter  to  detect dynarr~ics 

cha.nges. The detector gain can, in fact,  be  determined by inspection 

and the algorithms of Appendices A and B wil l  be  unnecessary for  this 

situation. 

The e r r o r  equation f o r  a change in the ijth element of A 

is obtai.ned a s  in the development of (4-33) using (4-41) and (4-42). 

A ( t  = (A - DC) ~ ( t )  + Aaij e .  x.(t)  (4-3991 
1 J 

The detection f i l ter  for  this event should b e  designed to detect the 

A 
vector ei, in which case  the settled-out output e r r o r  i s  

L 

p i  
E "t) = C E ( ~ )  = Aa..  CA e.  

1J 1 hi(t - 7 ) x. ( r )  J d r  

where  p i  is  defined by condition (4-243) fo r  and 

A with Hi(s) given by (4-240) f o r  f = ei. Note that the direction of the 

output e r r o r  in (4-400) is the s a m e  for  a l l  j. A knowledge of the 
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and f o r  i # j 

w ith 

and 

a . .  
111 

a iin i 

where  

(Note sI = nl and s = n . )  The f o r m  of (4-407) implies  that rk C = m. m 

This  point wi l l  b e  mentioned la te r .  The p roces s  of producing th is  

s t a n d a ~ d  f o r m  fo r  A and C i s  a l so  discussed la te r  in this  sect ion.  



With A and C in t he  above fo rm,  plant dynamics changes 

appear ar; changes in the  s c a l a r s  { a .  i j = l ,  . . . , m ;  1 = 1, . . . , ni} 
1 ~ 1  ' 

and t h e  e lements  of B. The  r e su l t s  of the  previous sect ions  can b e  

applied to A and C given by (4-403) t o  (4-408) t o  design a detection 

4 filter fo r  a l l  ei,  i = 1, . . . , n. In th i s  situation the maximal  genera tors  

for the 8, have a s imple  fo rm,  and the  equation for  the  detector  gain 

can be solved by inspection. When the s teps  f o r  designing a detection 

filter given in Section 4 .3 .5  a r e  followed, the r e su l t s  below a r e  easily 

established. 

1) Taking advantage of the fact  that  A can b e  replaced 

by A "  = iii - D"C for  a r b i t r a r y  D", a s  mentioned a t  the  end of 

Section 4 ,3 . l ,  let 

w h e r e  



and 

A!' = 0 - for  i # j 44-41?) 
~j 

A 
2)  The detection o rde r  of ei i s  nj+l where s . < i C sjmkl 

J 
A 

(S . given by (4-408) ), and its maximal generator is es .+l. (F om- 
J J 

0 < i - < n1 the detection order  of gi is nl and the maximal generator is 

4 el* ) This means that a l l  ei for  which s .  < i 5 s have the same 
J j+ l 

maximal  generator and detection space.  By the r emark  in step 1) of 

Section 4.3.5, only one of these $i need be considered. Then let gs 
.ii+ l 

b e  retained a s  the representative of al l  gi fo r  s .  < i C s 
3 j+le 

The 

s e t  of vectors remaining is then {$s . . . . , ). 
1 Sm 

A 3 )  A l l  vectors in the se t  ( 8  , . . . , e ) a r e  output 
1 'm 

separable and mutually detectable. The F for  this s e t  i s  

Then Equation (4-245) f o r  D can b e  solved by inspection 



DCF 

w h e r e  

and dl.. = d!'. given by (4-410) for  i f j .  Then 
11 1J 

with  

-p11 

- 
Pin. 

1 

This filter is a detection f i l ter  f o r  a l l  the coordinate directions 

$., i = 1: . . . . n. A change A a .  in one element aijl of A given by 
L 151 

(4-403) i;o (4-405) produces a settled-out e r r o r  of 



where 

s B -1 
hil (t) = Z-' n 

i n -1 
S 

i 
S + p i n  + ".. + pi2 s +  pil 

i 

xs.(t) is the s.th component of the s tate  vector x(t), and emi is a unit 
3 J 

rn-vector in the ith coordinate direction. F r o m  the f o r m  of C in (4-407) 

where y.(t) is the -jth component of the sensor  output vector. Then 
3 

(4-420) can be written 

where 

The p . .  in (4-421) a r e  a t  the discretion of the designer and a r e  known?. 
1J 

Since y.(t) is an accessible signal, the sca lar  function $.. (t) can be 
J 151 

generated 0.n- line from sensor output without knowledge of the plant 

dynamics. F o r  consistency of notation the B matr ix can be partitioned 



t o  ~zonform with A 

where  

A change b . .  in b produces a settled-out e r r o r  s ignal  of 
131 i ja 

A 
6' (t) = Cc(t) = Ahijr j, ijl (t) emi 

wi th  

where  u (t) i s  the -jth component of ud(t) and hil (t) is given by  (4-421). 
d j 

A s  in  the case  of $. . (t),  + ijl (t) can b e  generated on-line f r o m  
1~1 

access ib le  signals ( ud(t)) without knowledge of the plant dynamics.  

I t  has  been shown that  (4-403) t o  (4-408) a r e  especially 

convenient f o r m s  f o r  A and C. In Section 4.2.2 it was  demonstrated 

ahat a l l  plant descriptions which a r e  re la ted by a s t a t e  space  coordinate 

t ransformation can b e  considered equivalent. Unfortunately it is not 

always possible,  in general ,  to  put A and C into the f o r m  of (4-403) t o  

(4-408) by a coordinate t ransformation.  However, it can b e  shown 



that  t hese  s tandard f o r m s  can always b e  obtained by augmenting 

(enlarging) the  s t a t e  space.  Appendix C presen ts  a way of constructing 

a coordinate t ransformation which puts A and C into the fo rm of (4-403) 

t o  (4-408) except that the  off-diagonal blocks of A in genera l  have the 

f o r m  

and 

:k 
a . .  

1J 

(4-430) 

where  n .  > ni. If n = ni ( i  # j) t henAi j  and A.. have the f o r m  of 
J j 3 1  

:k 
(4-405). The appearance of the  nonzero element a . .  in (4-430) 

1J 
violates the  fo rm of (4-405). F o r  a genera l  A and C,  (4-430) is a s  

c lose  a s  one can get t o  the  f o r m  of (4-405) by a coordinate t ransforma-  

t ion which does not change the  dimension of the s t a t e  space.  To 
r t r  

explain the appearance of the elements a'" and determine how they may i j  

b e  eliminated (made ze ro )  by enlarging the  s t a t e  space ,  it wil l  be 

convenient t o  introduce the  concept of output decoupling. 



Definition 4.11. The m a t r i x  pa i r  (A,  C) i s  defined 

'$0 be out if A and C can be  put into the f o r m s  of (4-403) 

to (4-402) by a s t a t e  space  coordinate t ransformation.  

This  terminology is motivated by the fact  that with 

proper choice of D the  observable spaces  of the c .  (ith row of C) with 
1 

respect l;o (A - DC) can a l l  b e  made  nonintersecting (which is, in a 

sense, output decoupled). The  (A - DC) given by (4-418) i s  an example. 

Note tha?; th i s  definition implies  that an output decouplable pa i r  i s  a lso 

observable  and r k  C = m .  The definition could be  generalized t o  

include rlonobservable pa i r s ,  but that  is unnecessary for  purposes of 

plant dyrlarnics identification. This  point i s  discussed la ter .  

Definition 4.12. Consider t he  pa i r  (A ,  C), and let c i  

bz the ith row of C.  The output decoupling o r d e r  (o r  simply,  

decoupling o rde r )  of c .  is defined t o  be  the largest  integer value of j 
1 

such that 

w h e r e  

o r  j = 1, MTO i s  taken a s  the  z e r o  mat r ix . )  



An equivalent definition is the smal les t  positive integer value of j 

such that 

It can b e  shown f rom (4-431) o r  (4-433) that decoupling 

o rde r  is invariant with respect  t o  coordinate t ransformations of the 

s ta te  space.  Note that fo r  A and C in (4-403) to  (4-408) the decoupling 

o rde r  of each c .  is  n. and n + . . . + nm 1 = n. F r o m  the algorithm u s e d  
1 1 

t o  obtain the form of (4-429) and (4-430) it can b e  verified that the 

decoupling order  of each c i  is grea ter  than o r  equal to  ni, and the  
.b 

equality holds if and only if a:'. = 0 for  a l l  j = I ,  . . . , m. Thesie 
1J 

observations establish the following theorem. 

Theorem 4.7.  The pair (A ,  C), with A of dimerisisn 

n X n and C of dimension m X n, is output decouplable if and only if 

th  q l +  . o w  + q m  = n where qi i s  the decoupling o rde r  of ci, the i row 

of C. If this  is the case, then n. = q.  f o r  the standard fo rms  (4-403) 
1 1 

t o  (4-408). 

Output decoupling o rde r  has  an  interesting and useful 

relationship to  detection o rde r  which is stated in the  following theorem. 

T h e o r e m 4 . 8 .  I f f  i s a n y n - v e c t o r f o r w h i c h  cif $. -" 0 

(or  c i ~ " f  # - 0 in the case  of (4-108) ), then the detection o r d e r  of f 

cannot exceed the decoupling o rde r  of c.. 
1 

Proof:  

Let V be  the detection o rde r  of f .  Then f has  a maximal 

207 



generator  g which sat isf ies  

But c i ~ " - '  g = cif # - 0 , which means that c i ~ ' - '  must  be  independent 

of the  rows of 

This implies that (4-431) is satisfied fo r  j = v. Therefore,  v must  be  

less than o r  equal to  the decoupling order  of ci, s ince that is the 

largest  integer satisfying (4-431). This completes the proof. 

It i s  easy to  show that t he re  always exists a vector 

which has a detection order  equal to  the decoupling o rde r  of ci. If qi 

is the decoupling o rde r  of ci, condition (4-431) implies that t he re  must  
qi- 1 

exist sorne vector f such that M f = - 0 and ciA f f 0. The 
T, qi-1 - 

detection order  of this f must  be at  least  qi because f is a q th  i o rde r  

detectiora generator for  itself. On the  other hand, Theorem 4.8 shows 

t h a t  the  detection o rde r  of f cannot exceed qi. The only consistent 

conclusion is that the detection o rde r  of f is equal to  qi. The fact that 

such a n  :E exists shows that decoupling o rde r  has  the s a m e  invariance 



propert ies  a s  detection o rde r .  Specifically, decoupling order  i s  

invariant with respect  t o  replacement of A by (A - D"C) f o r  any D". 

The possibility of obtaining an output decouplable pair  

by augmenting the s ta te  space will now be  investigated. A plan 

description given by (4-1) to  (4-3) i s  represented by the mat r ix  t r iplet  

(A, B, C).  Referr ing back to  Equations (4-24) and (4-25), f rom which 

the notion s f  equivalent plant descriptions was developed, it can be  s e e n  

that the property which makes two descriptions,  (A, B, C) and (j;, 5, e ) .  

equivalent i s  that 

e w P - 4  

for  a l l  t .  When this  condition is satisfied, both (A, B, C) and (A: B, C )  

have the s a m e  dynamic t r ans fe r  f rom ud(t) t o  y(t). i. e.  , s ta r t ing  from 

z e r o  initial conditions, ud(t) elicits the s a m e  output y(t) f rom both 

descriptions.  In Section 4 .2 .2  only coordinate transformations w e r e  

considered, fo r  which A and have the s a m e  dimensions. Row ever ,  
,.A 

(4-435) can a lso  be  satisfied for  A and A of different dimensions. 

Using the terminology of Brockett [ 4 ] , a representation (A, B ,  C) sf 

the  plant dynamics with the smal les t  possible s ta te  space dimension 

(i .  e . ,  smal les t  n where A is n X n) wil l  b e  r e fe r red  to  a s  a -- minimal  

# P U P 2  

representation. Any equivalent representation (A, B, C ) (i. e.  , sa t i s -  

fying (4-435) ) having a la rger  s ta te  is considered nonminimal. Brockett 

shows that a minimal representation is both co.ntrollable and obr;ervable. 
N N N  

If (A, B, C) i s  nonminimal it can be controllable o r  observable, but not 

both. 



It must  now be  shown that it is possible to  obtain a 

deeouplat~le representation of the plant by allowing augmentations which 

p rese rve  the equivalence property (4-435). The following theorem 

places a Lower bound on the dimension of the s ta te  space which i s  

necessary for  an equivalent, decouplable representation. 

Theorem 4.9 .  If (A ,  B,  C) is a mi.nima1 representation 
d r J N  

and ( A ,  B,  @) is any other equivale.nt represe,ntation, the.n the decoupling 

o r d e r  of the ith row of ? cannot b e  l e s s  than the decoupling o rde r  of the 

iti- r o w  of C. 

Proof: 

Both mat r ix  exponentials in (4-435) can b e  expanded in 

a n  infinite s e r i e s  of the form (2-16) .  Since (4-435) must  be  satisfied 

for ah8 t ,  the s e r i e s  expans ions must  be  equal t e r m  by t e r m .  

Equat ion  14-435) is therefore equivalent t o  

C A ~ B  = C"Xj Bx for  a l l  j 2 O 

This implies that 

(4-437) 

for  a l l  j 2 0. 



Define 

w = [ B ,  AB, . . . . A"-'BI 

N w = [ii, IG, . . . , xn-'iil 

& 

Let c i  b e  the ith row of C, and gi the ith row of C. Also let qi be the 

decoupling o rde r  of c Suppose the decoupling order  of gi is l e s s  than i '  
,-,, wqi-' 

qi. Then (4-433) implies that ciA can b e  expressed a s  a l inear 
N 

combination of the rows of M T ,  qi- l '  
that is 

for  some  1 X m * (qi - 1) row vector 7 .  Now (4-437) implies that 

Since (A, B, C) is minimal,  (A ,  B) is  a controllable pa i r  and r k  IJ61 = ai, 

qi- 1 
Therefore,  (4-443) can be  solved uniquely for  ciA 



qi- 1 q - - 1  , 
c iA T -1 = . 1 w w T [ w w  ] 

and  simil.arly (4-437) with j = qi - 2 yields 

AI - 
M ~ .  qi- 1 - IVTT,qi-1 % W ~ [ W  wT] - I  

S ~ b s t l t u t ~ . n g  (4-442) and (4-445) into (4-444) gives 

qi- 1 - 4 
c iA T -1 - M ~ , q i - l  % W ~ [ W W  ] 

But this contradicts the  fact  that  the  decoupling o rde r  of c .  is q 
L i' 

Therefore ,  the decoupling o r d e r  of gi cannot be  less  than qi. This 

completes the  proof. 

By this  theorem the  decoupling o rde r  of any row of C 

csnnot be decreased when the s t a t e  space  i s  made  l a r g e r  than the 

m-tnimal one. Therefore ,  t o  obtain a decouplable representat ion (if  the 

m~ni rna l  one i s  not decouplable) the  s t a t e  space  mus t  b e  enlarged t o  a 

dimension of a t  least  (q. + . . . + q ), where  qi is the decoupling o rde r  
1 m 

of the ith row of C in a min imal  representat ion.  Appendix C demon- 

s t r a t e s  tllat th is  lower bound is ,  in fact  , reachable .  It p resen ts  a way 

sf augmenting a representat ion t o  obtain an  equivalent decouplable 

representat ion with dimension (q + . . . + 4,). 
1 

To  re i t e r a t e ,  a plant representat ion in the  f o r m  of (4-403) 

to (4-408) was  shown to be  desirable  f o r  the  detection of changes in 



plant dynamics. The  extended development on output decoupling and 

augmented representations was necessary because it is essential  to be 

aware  of the assumptions tacitly made about the plant when it is  

represented in the fo rm of (4-403) to  (4-408). Specifically the assump- 

tions a r e  a s  follows: 

(1) The plant is observable. 

(2  
t h The output decoupling o rde r  of the i sensor  (i .  e.  , 

the decoupling o rde r  of c i  in the minimal  representa-  

tion) does not exceed n.. 
L 

The f i r s t  assumption is entirely reasonable when 

dealing with the identification of plant dynamics f rom sensor  outputs. 

It was noted in Chapter 2 that the unobservable portion of the dynamics 

cannot be determined f rom the output (and input). It does not make 

sense ,  then, to  model the plant with an unobservable representation 

when the unobservable portion cannot be  identified. The second 

assumption places a restr ic t ion on the kind of dynamics changes which 

the standard fo rm model can handle. T o  b e  specific, the plant dTynamics 

should not change in such a way that the decoupling order  of the i 
t h 

sensor  exceeds n.. If this  happens (4-403) to  (4-408) cannot be  a valid 
E 

model ( i .  e . ,  an equivalent representation) of the plant f o r  any values 

of the elements a . .  . This means that the l e s s  pr ior  knowledge csne has 
LJJ 

about the possible plant dynamics changes, the l a rge r  the model w i l l  

have to  b e  to  guarantee a valid representation. Suppose, for  example, 

it is k.nown that the decoupling o rde r s  of the sensor s  will  remain  fixed 

a t  known values (ni for  the ith sensor) .  Then the plant can b e  safely 



modeled by a representat ion of the f o r m  (4-403) t o  (4-408) with a s t a t e  

space  of dimension (n + . . . + nm). If the  decoupling o r d e r s  of the  1 

s e n s o r s  do not necessar i ly  r ema in  fixed, but an upper bound ?i is i 

known for  each senso r ,  then the plant can be  modeled in the f o r m  of 

(4-403) t o  (4-408) with a s t a t e  space  of dimension (El + . . . + E ) If m 

the dimension of the  min imal  plant representat ion i s  known to  be  fixed 

at  (or a t  least  does not exceed) n, and it i s  fu r ther  known that the  

s e n s o r s  a l l  r e m a i n  independent ( i .  e. , that r k  C = m in the minimal  

representat ion) ,  then an  upper bound on the decoupling o r d e r  of any 

senso r  is (n - m + 1) .  In th i s  ca se  the plant can be  modeled with a 

s t a t e  space  dimension of m . (n - m + I ) .  I t  i s  interesting to  note that  

n 
this number attains a maximum value fo r  m near  - and approaches n 2 

a s  m approaches 1 o r  n.  Finally,  if it is known only that fo r  the  

minimal representat ion r k  C is a t  least  k and the  dimension of the  s t a t e  

space does not exceed n, then the upper bound on the decoupling o r d e r  

of any s3nsor  i s  (n - k + 1) .  In th i s  c a s e  a model  with an  [ m  * ( n  - k + I ) ]  

dimensional s t a t e  space  wil l  always b e  valid. 

The s tandard fo rm of (4-403) t o  (4-408) can b e  inter-  

preted i n  a different way which may have m o r e  physical  meaning in 

many e a s e s .  The  s t a t e  space  description of the plant given by (4-1) t o  

(4-3) is equivalent t o  a s e t  of m linear,  coupled, s c a l a r  differential  

equatiocs re la t ing the output var iables  Iyi(t) ; i = 1,  . . , m] to  the 

input var iables  {u .(t) ; j = 1, . . . , r).  In Chapter 5 th i s  s e t  of 
d~ 

dtfferent ia l  equations is  developed fo r  the  ca se  in which A and C a r e  

in the  fo rm of (4-403) t o  (4-408) (Equations (5-52) t o  (5-55) ). F r o m  

these  ecuations it can be  seen  that  each row of blocks of A in (4-403) 



corresponds to one differential equation. F o r  example, the blocks 

{Ai1, . . . , A. (and the corresponding row of block i s  B) art: 
Im 

associated with a differential equation for  the output component yi(t) 

This differential equation is  of o rde r  ni(where Ai i  i s  n. X n.) .  The 
1 1 

highest derivative of yi(t) in this  equation is ni. The significant feature 

of this equation is that the highest derivative of any other variables 

( y .(t)  for  j # i and udp (t) for  a l l  1 = 1, . . . , r )  is  l e s s  than ni. In 
J 

other words,  the driving t e r m s ,  involving u (t)  fo r  I = 1, . . . , r, dB 

and the  cross-coupling t e r m s ,  involving y.( t )  fo r  a l l  j f i,  a l l  have 
J 

lower order  derivatives than the highest o rde r  derivative of yi(l:), 

which is  

If the  plant dynamics can be  described by a s e t  of input-output equations 

having this  property,  then the s ta te  space description can be  put into 

the form of (4-403) to  (4-408), and vice ve r sa .  The meaning of the 

general  form of (4-430) is that if some a?. # 0 then the re  exists a 
V - 

cross-coupling t e r m  involving 

whose o rde r  is equal to  the highest derivative of yi(t). 

In closing this section, some final observations should 

b e  made. 



1) Although it was  not prove.n, i t  wi l l  b e  found that  if the  

f o r m  of (4-430) with a?. # 0 is used fo r  a plant model  then, in addition 
13 

to the objections a l ready noted, m o r e  than one detection f i l t e r  may  b e  

neces sa ry  to  detect a l l  of t he  coordinate direct ions .  This  happens 

* because the presence  of a nonzero a i j  makes  cer ta in  nonseparable 

eoordina1;e directions have nonidentical detection spaces .  This  r e su l t s  

in  uncontrolled eigenvalues which mus t  then b e  investigated f o r  s a t i s -  

factory f i l ter  dynamics.  

2)  The f o r m  of C in (4-407) implies r k  C = m where  

rn is the  number of s e n s o r s .  It may happen that  in the min imal  

representat ion fo r  the  plant r k  C < m .  Appendix C considers  th i s  

possibility, and in any c a s e  the  E in the  augmented representat ion wil l  

have f u l l  rank rr~. 

3) Because of the  f o r m  of hil (t) in (4-421),  the $ijl(t) 

for P = 1, . . . , ni in (4-424) a r e  the components of the s t a t e  vector  

for the  n.-dimensional sys t em 
1 



where  Pi is given by (4-419). Similar ly the bijp(t) in (4-428) a r e  the  

components of the s ta te  vector f o r  

with 

Chapter 5 discusses  s e v e r a l  methods f o r  processing the e r r o r  r;ignals 

given by (4-423) and (4-427) to  determine Aa..  
1~ Q and A b i j ~  . 

4.3.7 Sensor F a i  lure  Information 

In Section 4 .2 .3  it was found that  the best  infornlation a 

detection f i l ter  could provide about the sensor  fai lures  was an e r ro r  

signal constrained to  a two-dimensional plane. It will  be  shown in this 

secti0.n that this  can a lso  b e  achieved in the  case  of a partially 

measurable  s ta te  vector.  

When the 4h sensor  of the plant given by (4-1) to  (4-3) 

suffers  a fai lure  a s  described by (4-55) the equation for  the s t z t e  error 

can b e  obtained f rom (4-56) 



where d .  is the ith column of D. 
L 

The accessible  output e r r o r  is defined by (4-72) a s  

Theorem 4.1  is not directly applicable to (4-451) because di c o r r e -  

spond ing  .to f is not fixed, but depends on the detector gain D which is  

under the  control of the designer.  Therefore,  some additional resu l t s  

are necessary to  show that a detector gain does exist which will 

constrain the output e r r o r  t o  a plane, In previous sections an event has 

beein associated with the  dr ive t e r m  of the s ta te  e r r o r  equation ; fo r  

example, f in Equation (4-73). It i s  not sat isfactory to  associate  a 

sensor failure with di, however, because this  vector can b e  changed 

at  w i l l  and has no inherent relationship to  the sensor .  F o r  this  reason  

fai lure  of the ith sensor  will  be  associated with ci, the Eh row of C, 

and detectability of this  eve.nt will  b e  defined accordingly. 

Definition4.13. T h e i t h r o w o f C ,  c i = c T  C, is 
m i  

defined tc) be sensor  detectable if t he re  exists a ma t r ix  D such that 

(1) E '(t) is constrained to  l ie in a two-dimensional plane 

in the  output space,  where  E r(t) is given by (4-453) and 

~ ( t )  is the settled-out solution of (4-451) with n(t) an 

a rb i t r a ry  sca la r  t ime function, and 

( 2 )  a t  the s a m e  t ime,  a l l  eigenvalues of (A - DC) can be  

specified almost  a rb i t ra r i ly .  



The following theor em provides sufficient condi4,ions for 

sensor  detectability. Its proof will  lead to  the  design procedure for  a 

sensor  fai lure  detection f i l te r .  

Theorem 4.10.  If (A, C) is an observable pa i r  and ci, 

the  ith row of C, is linearly independent of a l l  the other rows in C. 

Then c i  is sensor  detectable. 

Proof: 

Let  f be  an n-vector satisfying 

Note that a necessary and sufficient condition f o r  the existence of such 

an  f is that c i  be  linearly independent of a l l  the other rows of C. By 

Theorem 4 .1 ,  f is detectable. Let  v b e  the detection o rde r  of f ,  and  g 

i ts  maximal  generator.  F i r s t  choose D to be  a detector gain for  f by 

constraining it t o  be  a solution of (4-113), o r  equivalently (4-1191, Then  

a s  shown in Section 4 .3 .1 ,  A - DC = A r  - D r C '  w h e r e A t  and C' are 

given by (4-133) and (4-134), and D r  is arb i t ra ry .  With (4-454:), 

Equation (4-119) for  D reduces to 

DCf = D $ ~  = di = plg + . . . + pvA V- 1 g + A " ~  

(4-455) 

o r  using (4-168) 

d i  = Z d  + Af 

where  zd is given by (4-170). 
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The purpose of making D a detector gain for  f is that 

d i  has heen fixed, a s  shown by(4-456). The sensor  failure detection 

f i l ter  ca.n now be obtained by making D r  a detector gain for  di. Note 

carefully, however, that in determining this second detector gain 

os,e must s t a r t  with the matr ix  pair (A ', C ') instead of ( A ,  C). In 

applying the resul t s  of Section 4.3.1,  A and C must be  replaced by 

A and C'. The only additional consideration necessary i s  the fact 

"cat (A \ C ' ) is not an observable pair ,  since 

It was shown at  the end of Section 4 .3 .1  that even for  a nonobservable 

pair a c,etector gain can be  found for  any vector which does not lie in 

t h e  unobservable space. Assume f i r s t  that di does not lie in the 

unobservable space of C r  with respect  to  A ' .  Then it i s  possible to  

f ind a EI '  which is a detector gain for  di (with respect  to  (A ', C ' )  ), and 

at the same t ime specify almost a rb i t ra r i ly  (n - V) eigenvalues of 

A ' - D I C. = A - DC. The remaining v eigenvalues a r e  associated 

\with the unobservable space of C '  (the detection space of f) and have 

already been specified by constraining D to  be a solution of (4-455). 

Therefore,  a l l  the eigenvalues of (A - DC) can be almost a rb i t ra r i ly  

specified. 



It must now be  verified that the output e r r o r  given by 

(4-453) will  b e  constrained to  l ie in a plane. With D '  selected t~ be a 

detector gain fo r  di with respect  to  (A I ,  C '  ), it is known that C '  ~ ( t )  

must l ie in a fixed direction, where ~ ( t )  is the settled-out solution of 

= (A - DC) ~ ( t )  + di n(t) (4-458) 

Let the fixed direction be represented by an m-vector yd. Theri C ' t f l P  

can be expressed a s  

where qd(t) is a sca lar  function depending on n(t). Now f rom (1-134) 

T 
where c = $ C is the i th row of C. (Notethat C' is simply C 

i m i  
with the ith row s e t  t o  zero.  ) Then 

and the output e r r o r  is 



is a sca la r  function, it is c l ea r  that € ' (t) l ies  in 

A the  -two-dimensional plane formed by yd and emi. 

In obtaining this  resu l t  it was assumed that di did not 

lie i n  the  unobservable space  of C r  . Suppose now that di does l ie  in 

this space.  Then 

By (4- 182)  and Definition 4.5 this  means that di l ies  in the detection 

space of f .  This,  in turn,  means that D satisfying (4-455) is a detector 

gain for  di a s  well  a s  f .  In this  case  the second s tep  of making D '  a 

detector gain for  di i s  unnecessary, and one can immediately conclude 

that C ~ ( l t )  l ies in a fixed direction. If this  direction is represented by 

A yd. then E ' (t) l ies  in the two-dimensional plane formed by yd and emi. 

The choice of D t  is unconstrained and can b e  selected to  a rb i t ra r i ly  

specify (n - v ) eigenvalues of (A - DC). As  before,  the remaining v 

eigenvalues a r e  specified by choice of the coefficients in (4-455). This 

co3cra-gsletc.s the fo rma l  proof of the theorem. 

This proof shows in a general  way how to proceed in 

des igning a detection f i l ter  fo r  sensor  fai lures .  Some additional 



material  will now be presented which is of significant value in develop- 

ing practical design procedures for these detection filters.  In remark 4) 

at the end of Section 4.3.1, a coordinate tratasformation was used to 

demonstrate how a detector gain could be found fo r  a nonobservable pa i r .  

In effect the problem was transformed so  that the unobservable ]?art s f  

the state space was eliminated from consideration, and the results s f  

Section 4.3.1 could be applied to a subspace which was observable - 
- 

specifically the observable pair (Al l ,  C1). In practice it is neither 

.necessary .nor desirable to actually perform a coordinate transformation 

to fi,nd a detector gain D r .  The same result can be achieved with the 

notion of vector equivalence classes . A complete formal development 

of this concept can be found in [ 7 ] . Only a brief introduction will be 

given here. 

Denote the unobservable space of C t  with respect to A 

by E. Two vectors xl and x2 in the state space a r e  defined to be 

equivalent modulo E (denoted x - x2 (mod E) ) if their difference lies 1 = 

in E.  The set  of all  equivalent vectors forms an equivalence class.  

The equivalence classes themselves can then be considered merrrbers 

of a .new vector space replacing the original state space. Because E is 

an invariant subspace with respect to A ', it can be shown that A V s  a 

linear operator in the vector space of equivalence classes (mod :E). 

Also, C "an be viewed a s  a linear operator from the space of 

equivalence classes into the ordinary m-vector output space. A:il the 

results of Section 4.3.1 can then be applied to this new state space 

(with A and C replaced by A '  and C'). The end result is that a l l  vector 

equations in the state space (i. e . ,  vector equations with n rows) remain 



valid except that "=" is replaced by " r (mod E) ". All other  equations 

(for exz~mple, (4-80) and (4-91) re ta in  the t r u e  equality sign. There  i s  

one exception to  this  ru le .  An equation in the s ta te  space re ta ins  the 

t r u e  equality sign if it is derived entirely f r o m  equations in which t r u e  

equality holds. An example i s  (4-105) which is derived f rom (4-80). 

Let v r  be  the detection o rde r  of di  with respect  to  

(A ' , C 9 and g i ts  maximal  generator (mod E) .  In this  situation the 

maximal  generator (mod E)  is not unique because any vector equivalent 

t o  g' is also a maximal generator.  The uniqueness asser t ion  of 

Theorem 4 .4  applies to  the equivalence c lass  of maximal  generators  

ra ther  than a specific n-vector. The algorithm of Appendix A for  finding 

a maximal  generator is applicable to nonobservable pa i rs ,  s o  it can be  

used to generate a g r .  Specific note is made of the nonobservable case  

in the appendix. The equation fo r  D ' corresponding to  (4-1 1 3 )  is 

v ' 
+ A '  g '  (mod E) 

This is equivalent to  the equation 

w h e r e  z is any vector in E.  The coefficients p '  and the  vector zE E i 

can be arb i t ra r i ly  specified by the desig.ner except that z must  l ie  in E 

E. A simple choice for  z is  0. E - 



When a D satisfying (4-465) is used to  form (A ' - D 'C ) 

= (A - DC), th i s  m a t r i x  wil l  have v eigenvalues given by the  roo ts  of 

and v' eigenvalues given by the roots  of 

$4-467) 

This  fact  can be  verified by introducing the coordinate t ransformation 

where  

T = [ w g  W ' .  T ] 
g 8 g2 

(4-469) 

with 

v- 1 w = [ g, (A - DC)g, . . . , (A - DC) gl (4-470) 
g 

and T i s  any n X (n - v - v' mat r ix  which makes  T nonsinizular. 
82  i9 

F r o m  (4-115) 

CA - DC) W = W P 
g g 

where  



The equation wi th  D '  c o r r e s p a n d i n g  t o  (4- 115) is 

(A '  - D ' c ' ) ~ '  g '  = - p i g '  - . . . - p b l ( A f  - D f C t )  v ' - 1  
g '  + zE 

(4-474) 

where  E is t h e  s a m e  v e c t o r  a p p e a r i n g  in (4-465). T h e n  

(A - D C ) W '  = 
g 

( A 1  - D ' C ' ) W k  = W '  P' + wGI2 
g 

(4-475) 

where  

o . . . . .  

O . . . . .  
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The s c a l a r s  { a E l ,  . . . . a~ v } a r e  defined by 

Any vector in E can be  expressed uniquely in this f o r m  because the set 

v-1 of vectors {g, Ag, . . . , A g) form a bas is  for  E.  Using these 

r e su l t s  the coordinate transformation yields 

where 

F r o m  the block triangular f o r m  of G it is c lear  that ( V  + v') eigan- 

values of E ,  and thus (A - DC), a r e  given by (4-466) and (4-46'71, The 

remaining (n - v - v ' )  eigenvalues can b e  specified by the freedom left 

in D '  a f te r  cons t ra in~ng it t o  sat isfy (4-465). 

The design procedure suggested by the above mater ia l  

i s  quite straightforward. F i r s t  g, the maximal  generator of f ,  is found,  

The coefficients pi a r e  selected and together with g, A ' and di can be 

formed.  Then s tar t ing with A ' , C '  , and di the standard design 

procedure fo r  an ordinary detection f i l ter  can b e  followed to determine 

a suitable D ' t o  detect di. The only difference is that the designer has 

some additional f r e e  choices to  make, such a s  the vector z in E 

(4-465). 



By taking advantage of equivalence propert ies  ar is ing 

from the vector equivalence c l a s ses  it is possible to introduce a number 

of simp]-ifications in the procedure described above. To begin with, 

d i  can t e replaced by any vector which is equivalent (mod E) .  Since 

"d in (4-426) i s  in E, Af is such a vector.  Besides being s impler  to  

form, A f  does not depend on the coefficients pi. The mat r ix  A '  can 

also be replaced by any other which is  equivalent (mod E ) .  The mat r ix  

K given by (4- 167) is  equivalent to  A ' . Like Af, it is  s impler  to  form 

and  does not depend on the pi. To  show that K and A '  a r e  equivalent 

(_mod E) ,  let x be an a rb i t r a ry  n-vector, and note f rom (4-169) that 

A s ince  Cf = emi. But (cix) i s  a sca la r  s o  the vector on the right is  

a lways  in E .  Hence 

for arb i t ra ry  x. This implies that K - A '  z - 0 (mod E) o r  

A ' E K (mod E)  

Equatiora (4-465) can b e  written in t e r m s  of K a s  

E'C'K v'-1 v ' 
g 1  = p i g '  + . . . + p;, K"-' g '  + K g t + z k  

(4-484) 

w h e r e  is any vector in E.  
" E 



Replacement of A ' and di by K and Af, which do not 

depend on the pi, a l so  allows cer ta in  s teps  in the  design procedure to  be 

per formed in a different o rde r .  In par t icu la r  it becomes possible to 

generate  g'  during the  s a m e  sequence of operations in which g is 

generated.  (Previously,  g had to  b e  found and the pi se lected before 

A ' and di could be  formed to  generate  g '  .) Generating g ancl 6 i n  

the  s a m e  operation i s  m o r e  efficient computationally than the  two-step 

p roces s  necessary  when g '  i s  found using A ' and di. The procedure 

is descr ibed in Appendix A .  

Returning to  (4-459), the  vector  yd can now be  more 

prec ise ly  identified. If C ' Af # - 0 then 

using (4-460). Then the output e r r o r  E ' (t) given by (4-462) lies in the 

plane formed by CAI and gmi. In general ,  if C 'A ' j ~ f  = C'K!AI = O - 
f o r  j = 0, 1, ..., P - 1 and C ' A " A ~  = C ' d ~ f  # 0, then - 

Q and E ' (t) wi l l  l i e  in the plane formed by CK Af and gmi. Note that the 

e r r o r  plane does not depend on the eigenvalues specified f o r  (A - DC) 

(i.  e . ,  on the pi o r  p! ). A Laplace t r ans fo rm analysis  of the  complete 
J 

e r r o r  dynamics can  b e  performed in a manner  s imi l a r  t o  that  in 

r e m a r k  5) a t  the  end of Section 4.3 .1 .  The  coordinate t ransformation 



given by (4-469) to (4-471) can be  used for  this purpose.  If this  i s  

dc~ne it will  be  found that,  in addition to  resu l t s  corresponding to  those 

i n  r e m a r k  5), the e r r o r  dynamics also depend, in par t ,  on z in (4-465) E 

and even on the particular g '  used in that s a m e  equation ( reca l l  g '  is 

not unique). Unfortunately the complete r e su l t s  of the Laplace t ransform 

analys i~;  in this case  a r e  considerably m o r e  complicated than those 

obtained in r e m a r k  5). The significantly grea ter  amount of computation 

r e q u i r e d  to  obtain and interpret the resu l t s  reduces their  pract ical  

use fu lness .  

Up to this  point the design of a f i l ter  to detect only a 

single sensor  fai lure  has  been considered. With the use of equivalence 

classes (mod E) the resu l t s  of Sections 4.3.2,  4.3.3,  and 4 .3 .4  can be  

applied to  the problem of designing a detection f i l ter  t o  detect a number 

of senscsr fai lures .  The s teps  in design correspond in a general  way to 

those li,;Led in Section 4.3.5 with some additional considerations. 

Below is a brief description of a straightforward design procedure.  It 

i s  not necessar i ly  the most  efficient computationally. 

1) Consider k rows of C, each of which is independent 

of a l l  other rows in C. F o r  convenience of notation let  these be  the 

first k rows {c . . . , c } .  F o r  each c. determine f .  such that 
1 L 

2 )  F o r m  F = [ f l ,  . . . , fk] . By construction in s tep 1) 

the f .  a r e  a l l  output separable  vectors .  Generate the 0. and a s  
I. 1 

described in Appendix B. If A does not exist (has ze ro  dimension), the 

f i  are rnutually detectable. If A does exist, identify its eigenvalues 

a n d  decide if they a r e  satisfactory. If not, apply the resu l t s  of 



Section 4.3.4 to  subdivide the se t  I f l ,  . . . , fk)  s o  that the undesirable 

eigenvalues a r e  eliminated. If the standard form model of the p:iant 

suggested in Section 4.3.6 is  used, the f i  will  always be  mutually 

detectable. This s tep can be skipped in that case .  

3) Let {f l ,  ..., f } b e a  s e t r e s u l t i n g f r o m  s t e p 2 ) .  
kl 

F o r m  the vectors  {Afl, . . . , A f k  ) and the ma t r i ces  A ' and C ' 
1 

defined by (4-254) and (4-255) with F = [ f l ,  . . . , fkl] . F o r  each 

vector Af. one of three  possibilities must  hold. 
1 

(i) A f i  does not lie in the unobservable space of C ' 

with respect  t o  A ' . 

(i i)  A f i  does lie in the unobservable space of C ' ,  

and any detector gain satisfying (4-245) i s  a lso 

a detector gain for  Afi. 

(iii) Afi l ies  in the unobservable space of C ' , but 

a detector gain satisfying (4-245) is not a 

detector gain for  Af  i '  

Case  (ii) will  r e su l t  if A f i  l ies in the detection space of some f . .  It 
J 

may also resu l t  when Af. l ies in a subspace made ilp of seve ra l  
1 

detection spaces which have some identical eigenvalues . The ch,ance 

of this  special  situation occurr ing is  made m o r e  likely by specifying a 

la rge  number of identical eigenvalues for  the detection space of the f., 
J 

In any case ,  one way to  check for  the occurrence of c a s e  (ii) for  any 

Afi lying in the unobservable space of C' is to  determine if the 

sequence of vectors  { c A ~ ~ ,  CA 'Afi, . . . , CA Afi} a l l  l ie  in one 

direction. If they do, case  (ii) applies, if not case  (iii) applies. 



Retain a l l  f i  for  which (i)  o r  ( i i)  holds and remove  any others  f r o m  

the s e h  

4) Let I f l ,  . . . , f } b e  a s e t  resul t ing f r o m  s tep  3).  
2 - 

Define A '  and C '  by (4-254) and (4-255) with F = [ f l ,  ..., f ] . The 
k , 

-4f. in  category (i)  of s tep  3) mus t  now be  checked f o r  mutual  detecta- 
L 

Sihity w.ith r e spec t  t o  (A ' , C ' ). This  means  essentially repeat ing 

step 2)  with A, C, and the f i  replaced by A ' ,  C ' ,  and the A f i  F o r  

any A f .  which produces undesirable eigenvalues, the  corresponding f i  
I 

is removed f rom the s e t  {fl,  . . . , fkZ}. If some  vectors  a r e  removed,  

some i\f i  may  move f r o m  category (ii) t o  category (i) .  Then mutual  

detectability of the Afi mus t  be  rechecked with the  new m e m b e r s .  

5) Let  I f l ,  . . . , f k  b e  a s e t  resul t ing f rom s tep  4). 
3 

A detector gain f o r  the  Afi in category (i) can b e  found by solving a 

s e h o f  equations f o r  D '  of the f o r m  of (4-245). The  remaining freedom 

in M ' , if any, i s  used t o  specify the remaining eigenvalues of (A ! - D ' C 9). 

A procedure analogous t o  that  mentioned in s tep  4) of Section 4 .3 .5  can 

b e  used to  do th i s .  The resul t ing ma t r ix  (A ' - D ' C ' )  = (A - DC) yields 

a detection f i l t e r  which wil l  detect the fa i lu re  of any of the k3  s e n s o r s  

associ:ited with the vec tors  { f ,  . . . , fk  }. 
3 

It should b e  emphasized that when the  plant i s  modeled 

in  the standard f o r m  suggested in Section 4 . 3 . 6 ,  many of t hese  s t eps  

a r e  considerably simplified and can often be  completed by s imple  

inspection. Chapter 5 d i scusses  the processing of detection f i l t e r  

e r r o r  signals t o  diagnose senso r  fa i lures .  



4 . 4  Summary 

The concept of a detection filter and the motivation for ~.ks 

development was discussed in Chapter 3 .  Basically it is designed to 

provide information which will aid in the detection and identification of 

effector and sensor failures and changes in the linear plant dynamics 

a s  described in Chapter 3 .  The detection filter produces an output 

estimate which asymptotically approaches the actual output of the 

sensors when there a r e  no failures, plant changes, o r  other di~sturb- 

ances. A deviation from the undisturbed condition produces an 

accessible e r ro r  signal which is the difference between the actual 

sensor outputs and the filter estimate of those outputs. The e s ,~en t i a$  

feature of a detection filter is that it is designed to respond in .ni special 

way to certain failures or  changes. Of course any other disturbance 

may also elicit an e r r o r  response from the filter,  but by knowii~g and 

looking for the special responses it is possible to detect and identify 

the occurrence of a failure or change even though it is obscureci by the 

ambient disturbanc e level. 

When a failure or  change occurs which a certain filter has been 

designed to detect, that filter will produce an output e r ro r  signal which 

has a fixed direction (the output e r r o r  is a vector-valued signal). That 

fixed direction is identified with a certain failure or plant change, 

There a r e  two qualifications to this ideal situation. F i r s t ,  several  

failures o r  changes may be associated with a single e r ro r  direction. 

Often additional information (e. g . ,  dynamic properties of the e r ro r  

magnitude) can help to differentiate among such possibilities. Second, 

it is not possible, in general, to construct a filter which produces a 



f ised-direction e r r o r  in the case  of a sensor  fai lure .  The best  that 

c a n  be  done is to constrain the e r r o r  to  a two-dimensional plane. 

Wihen the re  a r e  a sufficient number of independent sensor s  to 

be able to determine instantaneously the s ta te  of the plant (assuming 

perfect measurements) ,  the s t a t e  vector i s  considered to be  fully 

measura ' i~le .  In this case ,  a s  is shown in Section 4 . 2 ,  a single 

detection f i l ter  can provide information about a l l  the events described 

i v  Chapter 3 -- effector fai lures ,  sensor  fai lures ,  and changes in plant 

dynamics.  This f i l ter  is of the s a m e  o rde r  (s ta te  vector dimension) 

a s  the plant. In response to  a single fai lure  o r  change it produces an 

e r r o r  signal fixed in direction, with a magnitude equivalent to  the response 

01 a first, o rder  l inear sys tem driven by the magnitude of the fai lure  o r  

change (.. e . ,  the magnitude of the deviation f rom the normal  operating 

character is t ics  of the plant). The t ime constant of this f i r s t  o rde r  

response can b e  arb i t ra r i ly  specified by the designer,  but is  the s a m e  

for a l l  events. Of course it i s  not necessary to use a single all-purpose 

f i l te r .  In some situations it may be  preferable to  use seve ra l  f i l ters  

and  ta i lor  the i r  dynamic character is t ics  t o  match the character is t ics  

of different events. It would s e e m  desirable ,  however, to  keep the 

number of detection f i l ters  small .  

When the s ta te  vector of the plant is not fully measurable ,  it is  

not  possible to  construct a single all-purpose f i l ter  which provides 

infsrmar;ion about a l l  events. It is not difficult t o  show that even in this  

case it is  possible to construct a f i l te r  which produces the character is t ic  

flxed-direction e r r o r  signal. in response to  one event at least .  But the re  

a r e  two other important considerations in the design of a detection f i l te r .  



The f i rs t  is the ability to control certain dynamic properties sf the 

f ilter while achieving the f ixed-d irection e r r o r  charact eristic . Not 

only is it important to be able to avoid undesirable (e. g . ,  unstable) 

filter dynamics, but also to be able to tailor those dynamics .to enhance 

the response to the events of interest and suppress the response to  other 

disturbances. The results of Section 4 .3 .1  show how it is pss,;ible to 

obtain the fixed-direction e r ro r  response for one event and at the same 

t h e  retain control over the poles of the detection filter.  It is found 

that the e r r o r  magnitude response is not necessarily that of a first 

order system a s  it was in the case of a fully measurable skate .sector, 

However, for each event there is a maxLmum system order for the 

magnitude response beyond which the fixed-direction property cannot 

be achieved. This order is defined as  the detection order of the event- 

It is found that the order of the e r ro r  magnitude response shsu1.d be 

made a maximum, i. e . ,  equal to the detection order,  if one wishes 

to remain control over a s  many poles oflthe filter a s  possible. The 

poles associated with the magnitude response can be arbitrarily 

specified by the designer, but the zeros cannot. It is possible to 

determine the location of the zeros before specifying the poles, so zeros 

in the left half of the complex plane can be cancelled with poles if 

desired. 

Because the control of the detection f i l ter  poles is incluajed in  

the problem of detection, the condition of observability of the p'lant 

appears in the results.  When a plant model is not observable, then a 

detection filter which considers the full  plant w i l l  have a certain number 

of poles equal to those of the plant, and these cannot .be contro1l.ed by 



the designer of the f i l ter .  In a pract ical  s ense  observability plays 

only a superf icial  role ,  however. The whole subject of detection he re  

is based on obtaining information f r o m  only accessible  signals.  As  

noted in Chapter 2, when a plant i s  not observable, the unobservable 

portion ha:; no effect on the accessible  signals.  That portion then is  

1 9  unknowab2e" with respect  t o  accessible  signals,  s o  for  the purpose of 

detection it does not make sense  t o  model the plant dynamics with an 

unobservable representation. 

The second important consideration in the design of a detection 

f i l te r  is t o  make the f i l ter  a s  versat i le  a s  possible, i .  e . ,  able to  

provide information about a s  many events a s  possible. This problem 

is the subject of Sections 4.3.2,  4.3.3,  and 4.3.4.  It is found that in 

constructing a f i l ter  to  detect a number of events it i s  not always 

possible to  retain control over a l l  the poles of the f i l te r ,  Section 4 .3 .3  

shows how to determine which events can b e  detected by the s a m e  

f i l ter  while s t i l l  retaining control over a l l  poles. Section 4.3.4 takes 

a broader  view and allows the possibility of uncontrolled poles in the 

f i l ter  . It demonstrates how to  identify such poles and how undesirable 

poles can  be eliminated by removing cerftain events f rom the se t  of 

events which the f i l ter  is required to  detect. 

The final t h ree  sections in the chapter specialize the previous 

general resu l t s  to the th ree  types of events described in Chapter 3. 

Section 4 . 3 . 5  deals with the detection of effector fai lures .  A brief 

step-by-strep design procedure is presented, and the e r r o r  response of 

the result]-ng f i l ter  is  discussed. Section 4 . 3 . 6  considers the use of 

detection f i l te rs  to determine changes in plant dynamics. It descr ibes  



a standard f o r m  model fo r  the plant which simplifies the design process  

and makes it possible t o  produce information about a l l  changes in plant 

dynamics. This model may have a l a rge r  s ta te  vector dimension than 

the minimum dimension necessary to  represent  the plant when the 

dynamics a r e  completely determined. The enlarged s ta te  vector 

ref lects  the uncertainty introduced by the possibility of changes; in  the 

plant dynamics. Section 4.3.7 deals with the most  complex problem 

in detection f i l ter  design -- the detection of sensor  fai lures .  lit is shown 

that the e r r o r  response to  a sensor  fai lure  can be res t r ic ted  tc  a two-  

dimensional plane if that sensor  output is modeled a s  being independent 

of the other outputs driving the f i l ter .  In the standard form suggested 

in Sect ion 4.3.6, every sensor  output is modeled a s  independent s f  a l l  

the others .  If in the minimal plant representation some sensor s  a r e  

dependent and a r e  s o  modeled, then a m o r e  direct way of detecting a 

fai lure  is by a s imple comparison of outputs. This point is illustrated 

in Section 4 . 2 . 3 .  The detection-filter method of detecting sensor  

fa i lures  complements the direct-comparison method. The direct- 

comparison method can b e  used only if the sensor  is dependent on other 

sensor s ,  whereas f o r  the  detection-filter method the sensor  is assumed 

t o  b e  independent of the other sensors .  

A detection f i l ter  f o r  any type of event is of course  based on a 

model of the plant dynamics. One detection f i l ter ,  at least ,  will. have 

the responsibility for  detecting and identifying changes in these  

dynamics - in effect forming a new plant model. Having obtained a 

new plant mode1,all the other detection f i l t e r s  must  be  rechecked and 

adjusted, if necessary,  t o  fi t  the new model. Therefore,  it is important 



Lo the overal l  reorganization scheme  t o  have efficient f i l t e r  design 

algorithrrls which can b e  ca r r i ed  out by on-line computers .  F o r  this 

r ea son  r e fe rence  is made  throughout Chapter 4 t o  Appendices A and B 

w h i c h  descr ibe  a lgori thms f o r  obtaining the var ious  vector  and ma t r ix  

qnaitities necessary  in the  f i l t e r  design process .  These  a lgori thms 

a r e  developed fo r  a genera l  l inear  plant description.  When a s tandard 

for]% plarit model  is used, a number of significant simplifications resu l t .  



CHAPTER 5 

IDENTIFICA TION DECISIONS 

5 . 1  General Discussion 

This chapter investigates the problem of identifying events from. 

the e r r o r  signals produced by detection f i l ters .  The detection f i l ter  is 

designed to produce a fixed-direction e r ro r  in response to certain events. 

Ideally the identification problem is a simple matter of noticing the 

fixed-direction e r ro r  and associating it with a specific event. 'The 

actual identification problem is more difficult than this for  two reasons. 

The f i rs t  is that the detection filter may be responding to other disturb- 

ances besides the specific event producing a fixed-direction e r ro r .  W h e n  

these extraneous e r ro r s  a r e  added to the fixed-direction e r ro r  the 

result is an e r r o r  signal not fixed in direction. The total er ror  must be 

processed somehow to recover the fixed-direction signal from 4 he 

extraneous e r rors .  Noise disturbance in the sensor outputs or  entering 

through the plant dynamics is one source of extraneous e r ro r s .  A 

second source is the occurrence of multiple events which must be 

detected by different filters.  For example, changes in plant dynamics 

will cause extraneous e r ro r s  in the output of a filter designed to detect 

effector failures. 

The second complicating factor in the identification problem is 

the case of nonseparable events which cannot be distinguished on the 

basis of e r ro r  direction alone. The most important example of this 

a r i ses  in the detection of changes in plant dynamics. A s  was seen in 

239 



Sections 4 .2 .2  and 4 .3 .6 ,  e r r o r  direction alone i s  not sufficient t o  

de te rmine  which elements of A o r  B have changed. E r r o r  magnitude 

information i s  a l so  necessary .  The identification of plant dynamics i s  

t rea ted  a s  a spec ia l  c a s e  in the  next section.  The identification of 

effector and senso r  fa i lu res  i s  investigated in the  f inal  section.  

5.2 :Plant Dynamics Identification 

'This secti0.n d i scusses  the  problem of determining changes in 

plant  dynamics f r o m  the  e r r o r  s ignal  produced by a detection f i l t e r .  

The problem wil l  be  considered f i r s t  in a f o r m a l  mathematical  f r a m e -  

work. This wil l  show, in theory,  what information the e r r o r  s ignal  can 

and  cannot provide about plant dynamics.  Such r e su l t s  wi l l  es tabl ish 

the  limitations on what can b e  expected f r o m  any dynamics identification 

scheme based on detecti0.n f i l t e r s .  Section 5 .2 .2  compares  the  detection- 

fi l ter rn ethod of dynamics identification to  s o m e  other  methods.  

5 .2 .1  Conditions f o r  Identifiability 

This  sect ion investigates the  conditions under which the  

?hilt dj.namics can (and cannot) be  uniquely determined f r o m  the  informa- 

t i o n  prcsvided by a detection f i l t e r ,  assuming perfect  knowledge of the 

input arid output vec tors  of the  plant. 

It wi l l  b e  assumed that  the  plant i s  modeled by 

with A and C in the s tandard f o r m  suggested in Section 4 .3 .6  



A.. = 
1 2  

where  n. 2 n and 
J i' 

where  

(ni x n.) 1 (5-5) 

(ni X n . )  
3 

a . .  

a 
jil 

a.  
J in i 

0 

6 

(n. X ni) 
J 



and 

The matrix B is partitioned to  conform to  the blocks of A a s  in Section 

4 , 3 , 6  

b . .  = 
1J 

b . .  

Tke e r r o r  response to  changes in individual elements of A and B i s  

grven by (4-423) and (4-427) respectively. Adding together the effects 

of all al'!owable changes in A and B yields a total  settled-out output 

error of 

wi th  $ (t) and Gijl (t) given by (4-424) and (4-428). In the first t e r m  i jr! 

on the right s ide  of (5-13) the summation on I has  the upper limit of 

- 
n. .  = min {ni, nj 1 

1J (5-14) 



instead of simply ni because nonsquare blocks of A have the fo rm of 

(5-7) in which aijl i s  identically z e r o  for  a l l  l > Kij. This  resu l t s  

f rom the algorithm of Appendix C fo r  obtaining the standard form. The 

ith component of E' (t) is 

gs-1s) 

Define the following vectors:  

A a . .  

A a . .  

f o r  j = I, ..., m 

f o r  j = 1, ..., r 

C . .(t) = f o r  j = 1, ..., m 
13 

(5-18) 

- (t) 

E i ,  m+j (t) = fo r  j = 1, ..., r 15-19) 



and  with these vectors form the composite vectors 

Now (5 -15) can be written as  

S il(t) 

'i, m+r (t) 

The basic problem in identification of plant dynamics is 

to  solve (5-22) for n given c t i ( t )  and Ei(t). The question of interest i' 

here is to  determine under what circumstances this i s  theoretically 

possible. Equation (5-22) can be viewed a s  a linear mapping from 

Euc l idean  space into the vector space of continuous scalar  functions 

over some time interval t 5 t 2 t F rom the theory of linear mappings 1 2 ' 

(Section 12 in [ 4 ]  ) it is known that ni in (5-22) can be determined to 

T within ;an additive constant vector which lies in the null space of E i  ( t) .  

The nu:ll space of S:(t) is the set of all  vectors no for  which E t ( t )  ro is 

identically zero  on the interval [ t l ,  t2]  . A time-invariant vector 

equation can be obtained from (5-22) by multiplying by Si(t) and 

integrating over [ t l ,  t2] . This yields 



and 

Any ni which sat isf ies  (5-23) a l so  sat isf ies  (5-22) and conversely.  

The null space  of E :  (t) over  [ tl,  t2 ]  coincides with the  null space of 

Mi(tl, t2) This resu l t  i s  proven by Brockett (Lemma 1, Section 14 in 

[ 4 ]  ). It is  c l ea r  f rom (5-23) that si can be  determined uniqueiy if and 

only if Mi(tl, t2)  is nonsingular. If Mi(tlJ t2)  is singular then f o r  any 

s which l ies  in the null space,  e1 . ( t )  will  be  ze ro  over the interval i 1 

[ t  t I . This means that a l l  standard form models whose pa ramete r s  1' 2 

have a vector difference n lying in the  null space  of Mittl, t2 )  can 
0 

reproduce exactly the  output of the ith sensor  over the interval [ t l ,  t2] . 
All  such models adequately explain the dynamic behavior of the plant 

t h over [ t l ,  t 2 ]  a s  measured by the i sensor .  Without additional 

information t h e r e  i s  no bas is  fo r  choosing among these models.  In other 

words,  any si which sat isf ies  (5-23) will  yield a model which can dupli- 

t h  ca te  the plant behavior over [ t l ,  t 2 ]  a s  seen  by the i s enso r .  Of 

course  the main purpose of having a plant model is  to  be  able to  predict 

future pla.nt behavior. It i s  of interest ,  therefore,  t o  determine the 

conditions under which differ e.nces between plant and model a r e  

indeterminant and t o  investigate the nature of those differences.  F o r  



this purpose it is necessary  t o  de te rmine  what c i rcumstances  produce 

a singular Mi(tl, t 2 )  Suppose Mi(tl, t 2 )  i s  s ingular  and no is a 

nonzero vector in the  null space .  Since, a s  noted above, the  null spaces  

T 
of  M i ,  t2 )  and t i  (t) coincide 

'1' t i  (t) no = 0 fo r  a l l  t l <  t < t2  

Par t i t ion  n into (m  + r) vec tors  conforming to  5 i(t). 
0 

MI i th  

and 

f o r  j = 1, ..., m (5-28) 

where the 7r . a r e  s c a l a r s .  F r o m  the  definitio,n of Ei(t) (5-26) can be 
0 ~ 1  

w r i t t e n  a s  



This equation is equivalent to a linear differential equation for $. . (t) 
1.3 1 

and 9.. (t).  To see  this, note from the definition of hi4(t) (4-421) 
13 1 

used in forming $. . (t) and $. . (t) it follows that 
13f 131  

-l  
0.. (t) = - 

131 
$. .  (t) for 1 = 1, . . . , n dtL-l 131 i (5-31) 

and 

dl -1 
. . t = - 

13 Q 
+. . (t) for Q = 1, . . , n dtL -1 151 i 

(5-32) 

Then (5-30) becomes 

n.. n 
r i -1 - 

ojr dt! -1 o ,m+j , l  1-1 - 131 (t) = O 
j=l 1=1 j=1 1=1 t 

(5-33) 

To simplify notation define 

Then (5-33) can be written 

where 



and 

-1 
p j ( ~ )  0, m-i-j, I 

By the?.r definitions Q i j l ( t )  and +ijl(t) a r e  re la ted to  y . ( t )  and u (t)  
J d j 

through the  differential  equations 

p i  .  - ( 1  = yj(t) 
13 1 

whe re  

The pip which appear  in (5-40) a r e  the  s a m e  a s  those appear ing in 

(4-419). These  a r e  the  coefficients chosen by the designer  t o  specify 

the  po:les of t he  detection f i l t e r .  Applying the differential  opera tor  

Y$X)  to $5-35) gives 

Interchanging the  o r d e r  of the differential  opera tors  and using (5-38) 

and (5-39) yields 

T h i s  shows that  (5-42) is a necessary  condition f o r  Mi(tl, t2) t o  b e  



s ingular .  It can a l so  b e  shown that it is sufficient. Suppose Q!3-30)  is 

sat isf ied f o r  any Q.(x) and p . (A)  having the  f o r m  of (5-36) arLd (5-37) 
J J 

with a r b i t r a r y  coefficients T (not a l l  z e ro ) .  Substituting (5-38) and  oj  1 

(5-39) into (5-42) and interchanging the  o r d e r  of the  differential 

ope ra to r s  gives (5-41). Defining 

equation (5-41) can b e  wri t ten a s  

Reca l l  that  fo r  the  e r r o r  s ignal  given by (5-15) it was  assumed that the 

in i t ia l  condition effects in the detection f i l t e r  had sett led out. The ni 

roo t s  of p i ( s )  = 0 a r e  poles of the  detection f i l t e r .  This  means  that 

t he  init ial  condition effects of any solution of (5-44) have the s a m e  

set t l ing t i m e s  a s  those of the detection f i l ter .  If t is l a rge  enough so  

that  the  f i l ter  has  sett led out, then the solution of (5-44) wil l  have 

set t led out a lso.  Since (5-44) is undriven, the  sett led-out solution is 

which gives (5-35) be  definition of q(t) .  The  development frolml (5-26)  

t o  (5-35) is equally valid in r e v e r s e  s o  (5-35) implies (5-26) which in 

t u r n  implies  Mi(tl, t2 )  is s ingular .  This  shows that  condition (5-42) 

is both necessary  and sufficient fo r  Mi(tl, t ) t o  b e  s ingular .  
2 

T o  s e e  c lear ly  what condition (5-42) means ,  it mus t  be 

interpreted in t e r m s  of the  dynamic behavior of the plant. This 



condition is a differential equation relating the control signal ud(t) 

and the sensor  output vector y(t). These quantities a r e  of course 

a l r e a d y  related by Equations (5-1) to  (5 -3)  describing the plant 

dynamics. These relationships must be clearly delineated before 

(5-42) can be properly interpreted. Consider the  plant representation 

(5- 1) to (5-3) with A and C in the form of (5-4) to  (5-10). Parti t ion 

t h z  s tate  vector x(t) into m n.-vectors to conform with the partitioning 
1 

OF A ,  

Then 

and 



where  

and 

Equations (5-48) and (5-49) a r e  equivalent to  the sca la r  differential 

equation 

where  n1 - 

Note that vkk(s) is the charac ter i s t ic  polynomial of Akk and ahvays has 

o r d e r  nk. The o rde r  of v .(s) ( j  # k) is l e s s  than o r  equal to  (E' - 1) 
k~ kj 

and y k . ( s )  has  o rde r  no l a rge r  than (nk - 1). Equation (5-52) for any 
J 

k does not sa t i s fy  condition (5-42) because v (x) has  o rde r  nk whereas kk 

the  operator  n (A) associated with yk(t) in (5-42) must  have o rde r  no k 



larger than  (nk - 1) a s  can be  seen f rom (5-36). This  means that 

M. ( t l .  t fo r  a l l  i  will  b e  nonsingular a s  long a s  the dynamic behavior 
2 

of ud(t)  and y(t)  cannot be  described by any equations of lower o rde r  

than those? given by (5-52) for  k = 1,  . . . , m .  In other words,  the 

plant should exhibit the full  dynamic propert ies  attributed to  it by the 

representation (5-1) to  (5-3). 

It is possible to  associate  the singularit ies of Mi(tl. t2 )  

~jirith seve ra l  specific situations. A nonminimal model may yield a 

s i rgu lar  M -( t  t2) .  It was noted in Section 4 .3 .6  that a nonminimal 
1 1' 

representation cannot be both controllable and observable.  The standard 

Iorm model is  constructed t o  b e  observable, s o  if it is nonminimal it 

must be noncontrollable. When a representation is not minimal  it is 

possible to reduce the dimension of the s tate  space  to  obtain a representa-  

tion which is minimal  and which has  the s a m e  dynamic relationship between 

input and  output. In effect the uncontrollable par t  of the sys tem is dis- 

carded to obtain the  minimal  representation. The reduced representation 

yields a se t  of differential equations relating y(t) and ud(t) t o  rep lace  

those given by (5-52) for  k = 1, . . . , m .  One o r  m o r e  of these  

eqi~ations will  be  of lower o r d e r  than (5-52) for  some  k s ince the s t a t e  

vector ha;; been made sma l l e r .  Any such equation will  f i t  the  f o r m  of 

(5-42) suggesting that some Mi(tl, t2) can be s i n g u h r  if the nonminimal 

model is used. This may o r  may not be  the c a s e  depending on the initial 

conditions;. The reason  a nonminimal representat ion can b e  reduced is 

because the uncontrollable portion of the  dynamics is never excited by 

t h e  input. As  f a r  a s  the relationship between i.nput and output is con- 

cer .ned,  this  porti0.n of the  dynamics can b e  ignored. However, this  

does not rnean that the  effect of the uncontrollable portion is never seen  



in the output. Because the model i s  observable,  the full effect of the 

uncontrollable portion can be  evident in the output provided the initial. 

conditions a r e  such that the uncontrollable modes a r e  excited by 

t rans ien ts .  In this  c a s e  the reduced minimal  representation will  not 

be  adequate to  explain a l l  the dynamics appearing in the output. The 

lower o rde r  equations suggested by the reduced representation will not 

be  valid and Mi(tl, t2 )  will  not be singular.  The lower o rde r  equations 

a r e  valid only if the initial conditions for  the uncontrollable modes a r e  

z e r o  or their  effect has  sett led out by the t ime  t l .  

The re  a r e  two reasons  why the model may be  non- 

minimal.  A s  noted in Section 4.3.6,  i t  may be  necessary to  enlarge the 

s ta te  space  in o r d e r  to  achieve the standard f o r m  of $5-4) to  (5- P O ) .  

If this  is done the model will  be  nonminimal. The method described in 

Appendix C fo r  enlarging the s ta te  space  demonstrates  the a rb i t r a ry  

nature of the added portion of the augmented model. Because of this 

an augmented model is not unique, and this no.nuniqueness i s  reflected 

in the singularity of cer tain M.(t t2)  (implying the solution of (5-23) 
1 1' 

i s  not unique). Singularities in Mi(tl, t ) which resu l t  f rom an augmented 
2 

model present  no theoret ical  problem because any solution of (5,-23) wil.21. 

yield a plant representation which cor rec t ly  models the plant be l~avior .  

The multiple solutions of 15-23) simply correspond to  the a rb i t r a ry  

portion of the augmented model, which is not related to  any dynamics 

in the actual plant. 

A second reason for  a nonminimal representation is  that 

the  actual  plant may be  nonminimal. This could be  the resu l t  of effector 

fa i lures ,  s enso r  fai lures ,  o r  dynamics changes which have caused the 

plant t o  become unobservable o r  uncopltrollable. In this  c a s e  a portion 



of the  actual plant dynamics may be unidentifiable. An unobservable 

plant mE.y result  f rom sensor  failures o r  changes in dynamics. In this 

case  Mi(tl. t2)  for  some i will be singular. As  shown in Chapter 2, 

the unobservable portion of the plant dynamics will never appear in the 

output. This means that the plant behavior a s  seen by the detection 

f i l te r  can be  fully explained by a reduced s ta te  vector which resul t s  

w h e n  the unobservable portion of the plant is ignored. This implies 

the  relationship between input and output sat isf ies  a differential equation 

of  lower  order  than those derived f rom the original s ta te  vector, which 

is the s a m e  s i ze  a s  the s tate  vector of the model. This means 

condition (5-42) is satisfied, and therefore some Mi(tl, t2) will be 

singular. 

An uncontrollable plant may resul t  f rom effector failures 

or changes in dynamics. In this case  Mi(tl, t2) may be  singular o r  

nansingular. The uncontrollable modes of the plant dynamics will be  

seen i n  -the output if and only if they a r e  excited by the initial conditions. 

i f  some uncontrollable modes of the plant a r e  not excited by the initial 

conditions, then some Mi(tl, t2)  will be singular. If the uncontrollable 

portion 3f the plant is fully excited by initial conditions, and the 

controllable portion is fully excited either by the inputs o r  initial 

conditions o r  both, then ~ ~ ( t ~ ,  t2) will be nonsingular. Of course, 

init ial  c~nd i t ion  t ransients  can identify uncontrollable modes of the 

plant only if their  settling t imes  a r e  sig.nifica.ntly longer than the 

settling t ime of the detection f i l ter .  Otherwise the transie.nts will 

s etk le  Lcl zero  in the t ime allowed for  the f i l ter  t o  set t le  out. 

Even for  a minimal plant and model Mi(tl, ti) may be  

s i n g u l a r  if there is external low-order coupling between y(t) and ud(t) 



o r  between components of ud(t). External  low-order coupling means 

dynamic coupling of the f o r m  given by (5-42) caused by effects external 

t o  the plant. The  most  obvious example of external coupling is a feed-  

back loop. If y(t)  and ud(t) a r e  related through feedback by a low-order 

relation in the f o r m  of (5-42), then some Mi(tlJ t2)  will  be s i q u l a r .  

Coupling between components of ud(t) may a lso  cause a 

singular Mi(tl, t 2 )  It can b e  shown that fo r  a minimal  representation 

s o m e  Mi(tlJ t ) will  be  singular only if t he re  exists a se t  of poly- 2 

nomials { X . ( s ) ,  j = 1, . . . , r) (not a l l  identically ze ro )  each with 
J 

o r d e r  no l a rge r  than (n -t Fi- - I), such that 

where  .n i s  the s ta te  dimension of the minimal  representation and 

- 
n = max {n ..., nm) (5- 57) 

Define the ma t r i ces  of polynomials 

L vml(s).  . . . v (s) J mrn 



Then the  equations (5-52) for  j = 1, . . . , m can a l l  b e  wr i t ten  in one 

vector  equation 

Let E(s) be  the  ma t r ix  of cofactors  of N(s) havi.ng the proper ty  

%(s) N(s) = I ~ ( s )  I I = vO(s) I (5-61) 

( v ~ ( s )  is the charac te r i s t ic  polynomial of A .  ) Applying the operator  
-, 

N ( h )  t o  (5-60) yields 

= v 0 (h) ~ ( t )  + R( A )  ud(t) = - 0 

(5-62) 

A ssurne y(t) and ud(t) a l so  sat isfy  (5-42) f o r  s o m e  Q . ( x )  and p . ( ~ ) .  
J J 

Def lne  Kze vec tors  of polynomials 

Then (5-42) can be wri t ten 



Applying the operator v0(h ) to  this equation and using (5-62) yields 

Now v o ( s )  has order  n because it i s  the character is t ic  polynomial of 

A which is nX n. By (5-37) the highest order  polynomial in p ( s )  can 

have o rde r  no larger  than ii - 1 where ii = max {nl, . . . , n } Then m 
T the polynomial elements of p (s) vO(s) a r e  of order  no larger  than 

(n + i-i - 1). The matr ix  R(s) r(s) has no polynomial element with o rde r  

la rger  than (n - 1). This can be  shown from (5-62). Taking the Laplace 

t ransform of both (5-62) and (5-1) to  (5-3) and equating the t ransfer  

functions from r { u d ( t )  } to  X{y( t )  1 yields 

- 1 
The elements of C [ I s  - A ] B a r e  ratio.nal polynomials each wi th  a 

la rger  order  denomi.nator than numerator.  The same must be t rue  of 

s (s) / v 0 (  Hence, no polynomial element of m(s) r (s) can have 

order  grea ter  than (n - I), since vo(s) has order  n .  F r o m  (5-36) it is 

c lear  that ( T i  - 1) is the highest o r d e r  polynomial allowable in ~ ( s ) .  The 

T T 
complete differential operator [ -q ( X )  R( X) I? (x) + p (1) vo(h.) ] has 

order  .no la rger  tha.n (n +- - I ) ,  and therefore (5-66) has the form of 

(5-56) where 



(5-68) 

T The  case  where  [ - rlT(s) R(s) r ( s )  + p (s)  Y ~ ( s ) ]  is 

idienztically z e r o  corresponds t o  a nonminimal representat ion.  If 

r T T 
I - n ( s )  6i(s) I' (s) + p (s) v0 ( s )  1 = 0 fo r  a l l  complex values of s ,  then 

(5-69) 

f o r  any ud(t)  F r o m  (5-62) th i s  implies  

for  any ud(t) .  This  means  that ,  ignoring init ial  condition t rans ien ts ,  

(5- 65) is a valid relationship between y( t )  and ud(t), f o r  any u&, 

which i n  t u r n  implies  that  a reduction is possible  in the  o r d e r  of 

Equations 65-52). 

The  above deve1opme.nt shows that  if (5-42) is sat isf ied 

for some r) .(h) and p - ( h )  then (5-56) i s  satisfied f o r  the  x . ( x )  given 
J J J 

by (5-68). Since (5-42) is a neces sa ry  and sufficient condition fo r  

Mi(ti t g )  t o  b e  s ingular ,  one may. conclude that  (5-56) i s  a necessary  

condition fo r  some  Mi(tl, t 2 )  t o  b e  singular if the  model  i s  minimal .  

It is not 2 sufficient condition in general .  The negation of (5-56) is a 

sufficieni  condition f o r  a l l  Mi(tl, t 2 )  t o  b e  nonsingular. That is, if 

(5- 56)  is not satisfied f o r  any x . (h )  (not a l l  z e r o )  with o r d e r  l e s s  than 
J 

o r  equal t o  (n + ;i - I ) ,  then a l l  Mi(tl, t2) fo r  i = 1, . . . , m wil l  b e  

nonsingular, provided the  model  is minimal .  



In the case  of a scalar-input plant ( r  = I ) ,  these r e m a r k s  

can b e  made m o r e  tangible if the resu l t  i s  interpreted in the case  where 

the input ud(t) is assumed to be  a periodic s ignal  made up of a number 

of d iscre te  frequency components. F o r  r = 1, (5-56) reduces to  

where  ud(t) is a sca la r  and ~ ( s )  is  a polynomial of o r d e r  no l a rge r  

than (n + ii - 1). If ud(t) is  a periodic signal with d iscre te  frequency 

components, (5-71) will  be satisfied for  some ~ ( 1 )  only if the number 

of distinct frequency components in ud(t) is l e s s  than o r  equal to  

n + - 1 2  Therefore,  a sufficient condition f o r  a l l  Mi(tlJ t 2 )  to 

b e  nonsingular (and the minimal  representation t o  be  comp1eteE:y 

identifiable) is that ud(t) have at  least  (n + iT) 2 different frequency / 
components. F o r  a scalar-output plant ii = n, s o  one may conclude that 

the minimal  representation of a sca la r -  input, scalar-output p l  a n t  can 

be  completely identified if the periodic input has  at  least  n distinct 

frequency components. This ag rees  with a s imi lar  statement made 

by Young [ 271 . 
The resu l t s  of this section have been derived fo r  the 

genera l  case  where a l l  a . .  in A given by (5-4) to  (5-7) and a l l  b . .  
111 Y l j  

in B given by (5-11) and (5-12) a r e  subject t o  change. If in a par t icular  

situation only a limited number of a . .  and bijl a r e  subject to  change, 
131 

then it is necessary to  identify only those particular elements.  In that 

c a s e  T in (5-20) should include only those elements subject t o  change, i 

and Ei(t) should be shortened accordingly. Conditions fo r  identifiability 

of a limited number of elements can be  derived in the s a m e  way as  



shown here  f o r  the general  case .  F o r  a limited number of changeable 

e lements  sufficient co.nditions f o r  identifiability should be l e s s  res t r ic t ive .  

5.2.2 On-Line Identification Methods 

The  previous section demonstrated how the plant 

dynamics can b e  determined af ter  obs erving the detect ion f i l ter  e r r o r  

signal over a finite period of t ime.  The method used in that analytical 

development involved generating the vector SEi and the  mat r ix  Mi(tl, t2 )  

lor a given t ime interval [ t  t 2 ]  , then solving (5-23) for  the difference 1 ' 

between plant pa ramete r s  and model pa ramete r s .  This may b e  a 

feasible  method for  determining changes in plant dynamics on-line, 

provided t ~ e r e  is sufficient t ime and computing capacity to  solve the 

equation (5-23). The actual dimension of the vector equation (5-23) 

depends o n  the number of changeable pa ramete r s  in A and B, s ince,  a s  

noted i n  the  previous section, only changeable pa ramete r s  need to  be 

cons iderecl in the identification process .  Determining the plant pa ramete r s  

by analytical  solution of (5-23) would b e  most  effective in situations where  

the number of changeable parameters  is s m a l l  and the changes a r e  

expected tc, occur  in sudden jumps (as might b e  expected in the event of 

a fa i lure) .  

In situations where t h e  number of changeable pa ramete r s  

is la rge ,  and the changes a r e  nearly continuous and slowly time-varying, 

a more suitable method f o r  on-line identification is a re ference  model  

approach. There  a r e  seve ra l  reference model identification methods 

which have received considerable attention in the l i terature .  The 

detection f i l ter  can also be  used in a re ference  model approach. In 

the remainder  of this section cer tain propert ies  of the detection f i l ter  



method will  be compared to  the propert ies  of some other reference 

model techniques. 

The basic  philosophy of re ference  model identification 

is  to adjust cer tain pa ramete r s  in the model to null o r  minimize some 

measure  of the e r r o r  between plant and model. Two basic  distinguishing 

fea tures  of a re ference  model identification scheme a r e  the e r r o r  s igna l  

and the parameter  adjustment process .  The goal of the paraml3ter 

adjustment process  is simply to  null o r  minimize some measure  of the 

e r r o r  signal. Many algorithms for  parameter  optimization car1 be  used 

to obtain a parameter  adjustment law which attempts to  minimize the 

e r r o r  measure .  Gradient o r  "steepest descent" methods a r e  the most  

common example [ 1 2 , 1 4 , 2 5 ]  . Such gradient adjustment laws may be  

d iscre te  [ 1 2  J o r  continuous [ 12 ,141  . In some  cases  a recurs ive  

solution of a l inear least  squares  problem may be  used to  update 

parameter  est imates  at  d i scre te  points in t ime [ 271 . Another method 

f o r  determining a parameter  adjustment law is based on Liapunsv 

functions [ 171 . Most of these techniques can a lso  be used with the 

detection f i l ter  e r r o r  signal. There  is a substantial  body of lit12rature 

on the theory and use of such methods of parameter  adjustment and 

the i r  application to  re ference  model identification, s o  they will  not be 

analyzed fur ther  here .  It will  be  instructive, however, t o  compare 

some  important propert ies  of the e r r o r  signal f rom a detection f i l ter  

with those produced by other reference model methods. 

Mos t  re ference  model identification schemes a r e  variants 

on one of two basic  methods. The first method is often r e fe r red  to  as  

the response e r r o r  method [ 141 , o r  sometimes the "closed" m13thod 

by Russian authors [ 161 . The bas ic  philosophy of this method is to  

261  



apply to -the model the s a m e  observed input that is acting on the plant, 

arid to observe the difference between the plant output vector (as  

measured by the sensors )  and the model output vector.  This output o r  

response e r r o r  vector is taken a s  the  e r r o r  between plant and model. 

The secctnd basic  method is usually r e fe r red  to  a s  the equation e r r o r  

method [ 14,271 , o r  the "open" method [ 161 . The basic  philosophy of 

this rnell?od i s  t o  substitute the observed input and output vectors  of the 

plant into an  equation describing the estimated plant behavior (the 

equation i s  the model in this  case) .  If the equation accurately descr ibes  

the plantbehavior (and t h e r e  a r e  no unobservable disturbances),  then 

the observed input and output vectors  should sat isfy the equation. If 

they do not, the discrepancy i s  taken a s  the e r r o r  between plant and 

model.  The model equation is chosen s o  that the e r r o r  signal is an 

algebraic function of the parameters .  This means that the e r r o r  signal 

at any instant in t ime  depends on the parameter  values only at  that s a m e  

instant. This i s  not the c a s e  for  the response e r r o r .  In general  the 

response e r r o r  depends on past values of the pa ramete r s  a s  well. This  

is a n  important distinction between these two bas ic  methods. 

An important variant on the equation e r r o r  method is the  

generalized equation e r r o r  method [ 14, 271 . One of the difficulties of 

the equation e r r o r  method is that substitution of the observed input and 

output vectors  into the model equation often involves performing 

operations (e .g . ,  pure  t ime  derivatives) which a r e  undesirable with 

regard  1:s noise suppression. This problem is avoided by the generalized 

equatiorl e r r o r  method. The equation describing the  plant is replaced 

by a generalized equation which involves no pure  t ime  derivatives of the 
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input and output vectors.  Satisfaction of the generalized equation implies 

satisfaction of the original model equation. 

The use  of a detection f i l ter  f o r  plant identificat-.on is  a 

variant on the response e r r o r  method. The e r r o r  signal produced by a 

detection f i l ter  is  a kind of response e r r o r  -- t he  observed difference 

between the plant and model outputs when the s a m e  observed input is 

applied to  both plant and model. The distinction between the detection 

f i l t e r  method and the response e r r o r  method is that the e r r o r  signal 

f r o m  the detection f i l te r  is  fed back into the model. This interpretation 

can be  seen f rom the s t a t e  equation for  the detection f i l ter  

= Az(t) + Bud(t) + DEr(t)  

where  

E ' (t) = y(t) - Cz(t) 

i s  the observed o r  accessible  e r r o r  signal. Equation (5-72) r ep resen t s  

a model of the plant with the e r r o r  feedback t e r m  DE' (t) ,  a s  i l l l~s t ra ted  

in F igure  5-1.  If the detector gain D is made zero ,  then the e r r o r  

feedback would be eliminated and the r e su l t  would b e  a t r u e  response 

e r r o r  configuration. The effects of the e r r o r  feedback on the identifi- 

cation process  will  become apparent a s  the detection f i l ter  method is  

compared with the other methods. 

One advantage of the equation e r r o r  method and its 

var iants  is a resu l t  of the  fac t  that t he  e r r o r  signal is an algebraic fanne- 

tion of the parameters .  Because of this  fact, the  effect of parameter  

2 6 3  



Figure 5-1. 
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changes is reflected immediately in the e r r o r  signal. This means 

that parameter  adjustments can b e  made rapidly without destroying 

the validity of the e r r o r  signal. On the other hand, the response e r r o r  

signal does not, in general,  reflect accurately the effect of parameter  

changes instantaneously. If parameter  changes in the model a r e  made 

too rapidly without waiting fo r  the effect t o  appear in the respocse  

e r r o r ,  the meaning of the response e r r o r  becomes doubtful and 

stability problems may a r i s e  [ 12,171 . 
The parameter  adjustment law often involves pa r t i a l  

derivatives of the e r r o r  signal with respect  to  the pa ramete r s .  In  this 

c a s e  the above r e m a r k s  can be made m o r e  specific. F o r  the ecluation 

e r r o r  signal the par t ia l  derivatives with respec t  t o  the pa ramete r s  are 

t r u e  instantaneous par t ia l  derivatives (i .  e. , holding t ime constant). 

F o r  the response e r r o r  method such an interpretation is not appropriate 

because the e r r o r  signal depends on past values of the pa ramete r s .  

The par t ia l  derivative of the response e r r o r  with respect  t o  a parameter  

is usually interpreted a s  a sensitivity function [ 12,13, 221 . It is  the 

relat ive change in the e r r o r  t ra jec tory  over some  finite t ime in1;erval 

which would resul t  if the parameter  were  subjected to  an infinit1:simal 

t ime-  invariant change over that s a m e  t ime interval. This means that 

the pa ramete r s  should be  t ime -invariant during the t ime  intervs 1 in 

which the par t ia l  derivatives (sensitivity functions) a r e  being generated. 

This  condition wil l  be  satisfied if the parameter  adjustments a r e  made 

a t  d iscre te  points in t ime and the par t ia l  derivatives a r e  generated i n  

the intervening intervals.  If the parameter  adjustments a r e  made 

continuously, they should be made slowly enough s o  that the pa ramete r s  

appear to  be approximately t ime  invariant compared to  the response 
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t ime  of t ? e  model (which i s  comparable to  the response t ime of the 

pliant). 'Che equation e r r o r  method and its variants have no such 

theoret ical  limitation on speed of parameter  adjustment. 

As  a variant on the response e r r o r  method, the detection 

f i l ter  method a lso  has a limitation on the speed of parameter  adjustment. 

Specifically, the pa ramete r s  should be adjusted slowly enough s o  that 

they appear approximately t ime  invariant compared t o  the response t ime  

of the de.r:dction f i l ter .  This limitation i s  much less  res t r ic t ive  than for  

t he  response e r r o r  method. F o r  the response e r r o r  method the response 

time of the model is approximately the s a m e  a s  that of the plant (assuming 

t h e  ident..fication process  is successful) and is determined by the eigen- 

values of the ma t r ix  A in the plant representation (5-1). But the r'esponse 

t ime of the detection f i l te r  is determined by the eigenvalues of G = (A - DC) 

which,  a:; shown in Chapter 4, can be  a rb i t r a r i ly  specified if the  model  is 

observable.  This means that the response t ime of the detection f i l te r  can 

be made arb i t ra r i ly  fas t  consistent with other pract ical  considerations 

such a s  gain magnitudes and noise suppression. Therefore,  the speed of 

parameteer adjustment is not limited by the response t ime  of the plant a s  

the case  of the response e r r o r  method. 

These  r emarks  can be  made m o r e  specific by r e fe r r ing  t o  

Pauation (5 -22)  with ?ri and Ei(t) defined by Equations (5-16) to  (5-21). 

R eeaEl the  vector ?ri r epresents  the difference between model pa ramete r s  

and plant parameters .  A similar  equation obtains f o r  the equation e r r o r  

method. (Equation (5-22) represents  just one component of the vector 

e r m r  signal. Since a l l  the references mentioned in this section deal  

orJy wi th  identification of a scalar-input,  scalar-output system, the  

remarks which follow will  b e  specifically directed t o  that case .  Then 
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the e r r o r  signal is a sca la r  a s  in (5-22). The r e m a r k s ,  however, 

generalize to  the case  of a multiple-input, multiple-output sys tem.  ) 

F o r  the equation e r r o r  method, the equation corresponding to  65-22) is 

valid even if  a i  is  t ime varying. Recal l  for the detection f i l ter  method 

.ir was assumed time-invariant in obtaining (5-22). In a pract ical  i 

sense ,  then, the parameter  adjustments should be  made slowly enough 

s o  that (5-22) is a valid approximation fo r  the observed e r r o r  s ignal* 

Then the detection f i l te r  e r r o r  signal will  have approximately the s a m e  

interpretation a s  in the  case  of the equation e r r o r  method. 

Although the  equation e r r o r  method has  no theoret ical  

limitation on the  speed of parameter  adjustment,  it has  been shown 

experimentally that increasing the speed of parameter  adjustment 

beyond a cer tain level does not necessar i ly  increase (and may decrease)  

the speed of convergence of the identification process  [ 143 . It was 

noted above that the e r r o r  signal for  the  equation e r r o r  method can be 

expressed in a form s imi la r  to  (5-22). Ideally the parameter  adjust- 

ment process  is inte.nded to  converge to  the point .ir = 0 which, i.n the 
i - 

absence of sensor  noise and plant disturbances,  will  null the e r r o r  signal.  

However, at any t ime  t ,  any vector a .  which is orthogonal to  5 $t) w i l l  
1 

yield an e r r o r  signal which is  instantaneously ze ro .  The s e t  of alih such 

n .  orthogonal to  Ei(t) a t  t ime t fo rm a hyperplane of dimension {n - 1) 1 7T 

where  n . is the dimension of a. .  The hyperplane moves with 8: ime n 1 

(but always contains the origin, n = 0)  since Ei(t) is a t ime-varying 
i - 

vector.  Nacv if the parameter  adjustments a r e  made rapidly enough, 

the vector ni could follow approximately the movement of the t ime- 

varying hyperplane. This means that 7ii could remain  near the moving 

hyperplane, thus producing an approximately nulled e r r o r  signal without 



being c lcse  to  the  desired convergence point T = 0. Such behavior i - 
would  r e t a rd  the  convergence of the identification process .  It is only 

w h e n  T is unable to  keep up with the motion of the hyperplane that it i s  i 

forced kc converge toward the origin a s  desired.  Lion [ 141 has demon- 

s t rated that the speed of convergence can be substantially increased with 

the use elf multiple generalized equations. Each generalized equation 

produces  an e r r o r  signal expressible in the f o r m  of (5-22). By intro- 

cl~ciapg n independent generalized equations (where n is  the dimension 
77' T 

of T.), independent e r r o r  equations in the  f o r m  of (5-22) a r e  obtained. 
1 n7r 

in rheory, this implies Ti  can be  solved for  instantaneously (nn equa- 

4 .  iloas, n unknowns). In pract ice,  it means that ni is forced t o  converge 
7l 

t o w a r d  the origin regard less  of how fas t  parameter  adjustments a r e  

made ,  because there  is no nonzero T.  which ca.n null a l l  n e r r o r  signals 
1 7T 

s iniwltanec~us~y . Of course,  this  improved convergence is purchased at  

the expense of substantially increased complexity. Each independent 

generalized equation requi res  the equivalent of a plant model. 

Assuming parameter  adjustments a r e  made slowly enough 

sc that (5-22) is  valid, the above r e m a r k s  can b e  applied to the detection 

fiiter method also.  Multiple detection f i l te rs ,  each with different 

dynamics, can be  used to  achieve the s a m e  effect that Lion has obtained 

wi th  the u s e  of multiple generalized equations. A s imi l a r  increase  in 

cornplhexity is the  pr ice  of the improved convergence. The speed of 

parameter  adjustment is s t i l l  limited by the response t ime  of the 

detection f i l te rs .  

It has been noted in the l i te ra ture  that fo r  the equation 

e r r o r  method, disturbances in the observed plant output vector (i. e . ,  

sensor noise) will produce an  asymptotic bias  in the est imate of the 
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plant pa ramete r s  [ 16,271 . The magnitude of the bias  depends on the 

signal-to-noise ra t io  [ 271 . In the  t r u e  response e r r o r  method the 

est imate of the plant pa ramete r s  is not biased if, a s  is often tk e case ,  

the output of the model and the sensor  noise a r e  uncorrelated. In the 

case  of a detection f i l te r ,  the output e r r o r  signal is fed back ir.to the 

model through the detector gain. Hence, the output of the model wi l l  be 

correlated with the sensor  noise, producing a bias in the parameter  

est imates .  However, in th is  case  the s i ze  of the  bias depends on the 

detector gain a s  well  a s  the signal-to-noise rat io .  To s e e  th i s ,  note 

that if the detector gain is reduced to ze ro  the bias is reduced to zero, 

because the detection f i l ter  becomes simply a response e r r o r  model* 

Norkin [ 161 has suggested that the equation e r r o r  method 

with its f a s t e r  parameter  adjustment potential would b e  m o r e  desirable  

fo r  initial g ross  parameter  estimat e s ,  and the slower but unbiased 

response e r r o r  method would be m o r e  suitable for  final fine tuning. 

This philosophy would be  relatively easy to  implement with a detection 

f i l te r .  Adjustment of the detector gain can produce a smooth transit ion 

f r o m  a fas t  detection f i l ter  with propert ies  s imi l a r  to  the equatmn error 

method ( i .  e . ,  fas t  parameter  adjustment, biased by noise) to  the 

response e r r o r  method (with detector gain zero) .  

The purpose of this  section has been to  compare the 

potential of the detection f i l te r  method of identifying plant dynanlics t o  

other related methods. Various techniques for  adjusting the model 

pa ramete r s  were  mentioned brief ly .  They have not been discussed in 

detail  h e r e  because extensive l i te ra ture  already exists in th is  a r e a .  

Representative parameter  adjustment schemes may be  found Ln [ 12 ,14 ,  

1 7 , 2 2 , 2 5 ,  271 a s  previously noted. 



5. 3 - Identification of Effector and Se.nsor Fa i lu res  by Correlation 

This section d iscusses  the problem of ide.ntifying the occurrence 

cf  zffector o r  sensor  fai lures  in the presence of other disturbing 

influences. Consider a detection f i l ter  designed to  detect the  fai lure  

of any one of a s e t  of r effectors associated with the vectors  { b ,  . . . , br] . 
Failure of the ith effector of this se t  will  produce a fixed-direction e r r o r  

signal f r o m  the detection f i l ter  a s  given by (4-397). If no other  disturb- 

snces  a r e  acting on the  plant o r  sensor s ,  this  e r r o r  signal is  easily 

identified with the fai lure  of the ith effector. A s  noted in Section 5.1, 

the f ixed-direction e r r o r  sig,nal may be  obscured by other disturbances 

such a s  sensor  o r  plant noise, uncertainties in plant dynamics, and 

fa i lures  tke f i l ter  is not designed to detect. These  extraneous e r r o r s  

in general  will  not have a fixed direction in the  output space.  If the 

fixed-direction e r r o r  signal makes up a significant portioh of the  total  

e r r o r ,  one would expect the e r r o r  vector t o  b e  biased toward that 

d i rec t ion .  One way of identifying such a directional bias  is  t o  fo rm a 

correlation mat r ix  

over  some t ime  interval [ t 1,  t2J . R(tl, t ) i s  a n m X m p o s i t i v e s e m i -  2 

definite matrix.  It i s  helpful t o  associate  this  mat r ix  with an ellipsoid 

i n  m-dimensional Euclidean space. The ellipsoid is defined a s  the se t  of 

T all m-vectors  y such that y r )  5 1 fo r  any m-vector r)  satisfying 

nT Rq = 1 . This defines an ellipsoid centered at  the  origin and having 



principal axes along the eigenvector directions of R(t t2)  with length 1 ' 

equal to  twice the corresponding eigenvalues. If R (t l ,  t2)  is singular,  

the ellipsoid will  be  degenerate, i. e . ,  one o r  m o r e  principal axes will. 

have z e r o  length. When E ' (t) maintains an exact fixed direction over 

[ t l '  t 2 ]  , the ellipsoid consists of a single straight line. If other 

disturbances a r e  present ,  the additional e r r o r  signals will f i l l  out the 

ellipsoid by producing nonzero principal axes in other directions . 
Because the fixed-direction e r r o r  signal has  a l l  its power concentrated 

in a single vector direction the ellipsoid will  tend to  be  cigar-shaped 

with a dominant principal ax is  in that direction. A scheme for  identi- 

fying effector fai lures  in the presence of other disturbances is to  look 

fo r  a dominant axis ellipsoid with the  ma jo r  axis  nea r  a direction 

associated with an effector fai lure  (i.  e .  , the direction of E ' (t) in  

(4-397) ). Since the fai lure  directions a r e  known, it is not necessary 

to  analyze completely the shape of the e r r o r  correlat ion ellipsoid, It 

is sufficient to simply check fo r  a dominant axis in one of the known 

directions.  If the fai lure  directions a r e  linearly independent, one way 

of doing this  is to  t r ans fo rm the e r r o r  signal to a coordinate f r a m e  

where the effector fai lure  directions a r e  along orthogonal coorclinate 

axes.  Then a par t icular  effector fai lure  would b e  indicated by a single 

la rge  diagonal element in R(tl ,  t2 )  re lat ive to  a l l  the other elements.  

The correlation ma t r ix  can be  used in a s imi lar  way to  identify 

sensor  fai lures .  The e r r o r  response to  a sensor  fa i lure  is res t r ic ted  

to  a two-dimensional plane. In this  case  one would expect an es-ror 

ellipsoid having two dominant axes,  i. e . ,  having the shape of a pancake. 



CHAPTER 6 

FEEDBACK RESTRUCTURING 

6, I aZ. enera l  Discussion - 
After an event a s  described in Section 3 . 2  is detected and identi- 

f i e d ,  the next problem is to  r e s t ruc tu re  the sys tem to  compensate fo r  it.  

For ithe sys tem configuration shown in F igure  3-  1, the restructur ing 

"zakea place  in the feedback loop. The plant, which includes effectors ,  

sensors, and plant dynamics, is assumed to b e  inaccessible f o r  

restructuring. This means that effectors and sensor s  a r e  considered 

ncmrepairable. When the decision is  made that an effector o r  sensor  

has fai led,  two courses  of action a r e  possible. One is to  continue to  

use the failed component with some appropriate compensation f o r  i ts  

irregulal- behavior. The  second possibility is to  remove the component 

from further  use and r e s t ruc tu re  the feedback loop to function without 

it. The f i r s t  course  of action in general  requi res  m o r e  prec ise  

information o r  some a pr ior i  assumptions about the nature of the 

fai lure  in orde r  to  determine the appropriate compensation. In the 

Batter course  of action knowledge of the exact nature of the fai lure  is 

not necessary.  It is only necessary to  identify the failed component. 

This chapter wil l  be  concerned with the second "surgical" res t ruc tur ing  

method. Failed effectors and sensor s  a r e  removed f rom serv ice  and 

rsstruct~mring compensates f o r  the reduction in active components. 

Some attention has been given to  the nonsurgical method. Chien [ 51 

has used this  approach in dealing with fai lures  in redundant gyro a r r a y s .  



When a malfunctioning gyro has been detected (by a sophisticated 

method of comparison of redundant information), it is removed f rom 

serv ice  temporari ly  while the malfunction is investigated furth e r  to 

determine if it is possible to  compensate for  it (e .  g . ,  a biased sensor  

output can be  compensated for  if the bias can be  determined). If 

compensation is possible, the gyro is returned to  serv ice  af ter  the 

appropriate compensation has been implemented. 

The feedback loop consists of two basic  functional part:; -- the 

state-estimating f i l ter  and the s tate  feedback law generator.  If these 

two pa r t s  a r e  designed independently of each other (Section 3. :! describes 

the separation philosophy),the restructur ing problem for  each p a r t m a y  

also be  co.nsidered independently. This leads to  some simplification 

because some  events may requi re  restructur ing of only one par t  of the 

feedback loop. Another par t  of a self-reorganizing sys tem which may 

requi re  restructur ing is the detection f i l te rs .  It is of interest  to  mote 

the types of restructuri .ng required by each type of event. 

1) An effector fa i lure  requi res  restructur ing of the feedback 

law only. 

2 )  A sensor  fai lure  requi res  restructur ing of both the detection 

and state-estimating f i l te rs .  It may o r  may .not requi re  changi3s i n  the 

feedback law dependi.ng o.n the changes made in the plant model. The 

only necessary  change in the plant model is to delete f rom the C matrix 

the row corresponding to  the failed sensor .  In this  case  only the 

detection and state-estimating f i l t e r s  .need be  restructured fo r  the re -  

duced number of sensor  outputs. If the plant model is to be  kept in the 

standard f o r m  of Section 4.3.6,  a coordinate transformation of the 



scake space will  be  necessary in addition to  deletion of the appropriate 

rcnv of the C matrix.  In this  case  the s a m e  transformation must  be 

d ~ p l i e d  Po the feedback law. 

3)  Changes in plant dynamics may, in general,  requi re  

ri.strrzcturing of the detection f i l te rs ,  state-estimating f i l ter ,  and the 

feedback law. The detection f i l ter  which identifies the plant dynamics 

1s atatorratically adjusted in the process  of identification, s o  it does 

cot requi re  any fur ther  restructur ing.  The extent of restructur ing 

cecessa ry  in the other detection f i l te rs  (for effector and sensor  fai lures)  

a ~ d  the  state-estimating fi l ter depends on where the changes in plant 

dynamics appear.  F o r  purposes of the following discussion, detection 

f ~ l t e r s  for  sensor  fai lures  and detection f i l t e r s  for  effector fai lures  a r e  

r e fe r red  to  separately because they have different restructur ing 

requirements .  In fact,  one f i l ter  may detect both sensor  and effector 

faltlxres, in which case  the restructur ing requirements  include both 

those necessary for  sensor  fai lure  detection and those for  effector 

f a ~ l u r e  detection. Changes in the B matr ix  of the plant s ta te  equation 

require simple adjustments in the state-estimating f i l ter  and detection 

filers for sensor  fai lures .  F o r  these  f i l te rs  it is only necessary  to  

adjust the f i l ter  s ta te  equation 

'by replacing the old B mat r ix  with the new one. Detection f i l te rs  fo r  

effector fai lures  may requi re  m o r e  extensive restructur ing because 



detection o rde r s ,  detection generators ,  and the mutual de tec ta~ i l i t y  of 

the columns of the new B matr ix  may be  different. When the c~iange im 

plant dynamics occurs  in the A matr ix,  the restructur ing wil l  be 

s implest  if A and C a r e  in the standard f o r m  suggested in previous 

chapters  (e .  g., Equations (5-4) to  (5-10) ). In this case  the changed 

matr ix  (A + AA) can be  expressed a s  

because the changes in A occur only in the last  column of each block 

of A in (5-4). Note f r o m  (6-3)  that (A + A A )  has the form (A - D"C) 

with D" = - A A C ~ .  As noted in Chapter 4, detection fi l ter propert ies  

(detection o rde r s ,  detection generators ,  mutual detectability, etc. ) 

a r e  i.nvariant with respect  to  replacement of A by (A - D"C) for any D " ~  

Fur thermore ,  if the event vectors  (e.  g . ,  the columns of B for  3ffecdor 

fa i lure  detection) a r e  unchanged, it is necessary to  make only a simple 

adjustment in the detector gain D to keep G = (A - D C )  unchanged. 

Specifically, the adjustment A D  in D is taken t o  be  

Then 

(A + L A )  - (D + AD)C = (A + A A C ~ C )  - (D + aAcr)c 

= A - D C  = G 

(6-5) 

With this  adjustme,nt in the detector gain, G remai.ns unchanged and the 

detection f i l ter  detects the s a m e  event vectors  that it did before the 

change in A .  Therefore,  if the columns of B do .not change, the adjust-  
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meerst given by (6-4) is a l l  that is necessary fo r  the effector fa i lure  

detection f i l ters .  Detection f i l te rs  designed to detect sensor  fa i lures  

may requi re  m o r e  extensive restructur ing.  Recal l  that in order  to  

detect  a fai lure  in the ith sensor ,  a f i l ter  must  detect di, the i t h  

column ol' the detector gain mat r ix  D.  If this  column is changed by 

t h e  adjusi;ment A D  given by (6-4), then the f i l ter  may no longer detect 

t i i z  ith column of the new detector gain matr ix .  In this  case  the f i l ter  

mast be partially redesigned s o  that the f i l ter  does detect the  new di. 

If the state-estimating f i l ter  has  the s a m e  K a h a n - t y p e  configuration 

a s  a deteztion f i l ter  (Figure 5. I) ,  then the s implest  and fastest  way to 

compensate for  changes in A is to adjust the feedback gain D by the 

amount given in (6-4). This adjustment will  keep the poles of the f i l ter  

unchanged and thus guarantee stability, a t  least .  Of course,  this  may 

not be the best  f i l te r  f o r  noise suppression. If the adjustment given by 

(6-4) ine.-eases the feedback gains, then the effect of sensor  noise on 

Bh? s ta te  estimate will  be  increased.  If the original f i l ter  was s tat is-  

tically optimum (Kalman f i l te r ) ,  the adjusted f i l ter  will  not be  optimum 

in general. If a new Kalman f i l te r  is desired, then a Riccati  equation 

mas t  be solved in whole o r  in par t  to  obtain the new feedback gains. 

But whatever kind of restructur ing is used in the state-estimating 

filter,  "ce  adjustment in the feedback gain mat r ix  given by (6-4) is a 

quick, simple way to ensure f i l ter  stability. It can a t  least  be  used a s  

a temporary  measure  until m o r e  sophisticated restructur ing can be  

implemented where necessary. 

Ebeyond the s imple adjustments discussed above, the redesign 

o r  restri leturing of detection f i l te rs  is a mat te r  of implementing the 



theory in Chapter 4 with the algorithms presented in Appendices A ,  B, 

and C. It has been noted previously that a detection filter can also 

serve  a s  a state-estimating filter.  (In Chapter 4 it was shown that the 

state of a detection filter approaches the state of the plant asymptot- 

ically in the absence of disturbances.) If the state estimate for  f e e d -  

back control is taken from one o r  more detection filters,  the11 the  

problem of restructuring a state-estimating filter is taken care  of 

automatically in the restructuring of the detection filter.  Even i f  a 

separate state-estimating filter is used, detection filter theory can be 

applied to  the restructuring of a state-estimating filter in order to 

specify its pole locations. A s  noted above, if a t rue  Kalman filter is 

desired, it will be necessary to resolve a Riccati equation. If this is 

attempted, detection filter design algorithms can be used for in te r -  

mediate restructuring (pole assignment) to serve  until a new optimal 

solution is  obtained. Fo r  these reasons restructuring of a state- 

estimating filter will not be considered separately. 

The remainder of this chapter will be devoted to restr~xcturhng 

of feedback control law f o r  the primary purpose of maintaining stability 

of the closed loop system. Fo r  reasons stated in the next section, the 

feedback control to be considered is a linear time-invariant state 

feedback law of the form 

where L and LC a r e  time-invariant matrices of dimension r X n and 

r X rc respectively. Section 6.2 discusses the linear state feedback 

control problem and shows how the detection filter theory in Chapter 4 



cafi be applied in dual form to produce some interesting designs for  

Fsneai* state feedback control* Section 6 . 3  discusses several algorithms 

fL>- generating a linear state feedback control law. Two of these 

a 1,sorrthrns implement the feedback designs in  Section 6 .2 .  

6.2 Detection Results Applied to State Feedback Control 

When a change or  failure occurs in a system, the primary 

:mnediate concern is usually to achieve stability a s  quickly as  possible. 

The central  focus of the remainder of this chapter will be the r estructur- 

ing of t h e  feedback law to achieve closed-loop stability for the system 

s?tic?wn in Figure 3-1. The linear time-invariant state feedback law 

g i a e n  by (6-6) is particularly suited for this purpose. It is one of the 

n o r e  widely rased feedback laws. The optimal solution to the infinite 

,:>*:erval regulator problem is such a feedback law (without the command 

zn;>~it c(t )  ). En addition, this law yields a linear time-invariant closed- 

%sop system whose stability properties a r e  well defined and can be 

determined analflically. Even if the original and final restructured 

fendback laws a r e  not of the form of (6-6) ,  the l inear constant form 

can still serve a s  a temporary law to maintain stability while a more 

sc;phisticated law is derived. Therefore, (6-6) is a reasonable starting 

paint fo r  the development of restructuring methods. 

It will be assumed that the detection filters have identified the 

pailant dynamics, and any failed effectors o r  sensors have been detected 

a n d  removed f rom service. The information at hand is an up-to-date 

description of the plant 



The restructur ing problem to b e  considered he re  i s  to  develop methods 

for  selecting the L matr ix  in ( 6 - 6 )  s o  that the closed-loop sys tem 

i s  a t  least  s table  (if that is possible).  

If the state-estimating f i l ter  dynamics a r e  given by 

then the s ta te  e r r o r  

obeys the  equation 

;(t) = (A - DC) ~ ( t )  (6-13) 

Then (6-6)  can be  written a s  

and the complete closed-loop sys tem dynamics a r e  given by 



The pohes of the complete closed-loop sys tem a r e  given by the eigen- 

values of the mat r ices  (A + BL) and (A - DC). The eigenvalues of 

(A - DC) a r e  the poles of the  state-estimating f i l te r .  Restructur ing 

of the state-estimating f i l te r  was discussed in the  previous section. 

Assumh.ng this restructuri .ng is successful,  the  eigenvalues of (A - DC) 

a r e  known to  be stable,  s o  the stability of the  closed-loop system 

depends  on the eigenvalues of (A + BL). Fur the rmore ,  in the absence 

of disturbances the s ta te  e r r o r  satisfying (6-13) will  set t le  to  zero ,  

a n d  the closed-loop sys tem dynamics reduce to  

The restructur ing problem may now be  simplified to  the problem of 

choosirig L s o  that the sys tem given by (6-16) is stable.  Note that LC 

does not affect the stability of the closed-loop system, s o  it is of 

secondary concern in the restructur ing problem. Of course,  LC does 

not affect the dynamic response of the sys tem to  the command e (t). 

One way of selecting LC is discussed in Section 6.2.1. 

The problem of selecting L to  control the  dynamics of (6-16) 

i s  related by duality t o  cer tain aspects  of detection f i l ter  design. The 

problern of choosing L to obtain s table  eige.nvalues for  (A + BL) is t h e  

dual to the problem of choosing L~ to obtain stable eigenvalues fo r  

T T (.A + ~ 1 , ) ~  = ( A ~  + L B ). Selecting L~ to  specify eigenvalues of 

T T T (A + 1, B ) i s  o.ne of the co.nsideratio.ns in detection f i l ter  design. 1,n 

the notCstion of Chapter 4, A ~ ,  B ~ ,  and L~ correspond to  A, C, and -D. 

T Since (A + BL) and (A + BL) have identical eigenvalues, some  resu l t s  

of Chapter 4 a r e  immediately applicable to  the  feedback restructur ing 



problem. F r o m  Lemma 4.4  it can b e  concluded that by choice of L 

it is possible to specify a rb i t r a r i ly  exactly K eigenvalues of (A Jr BL) 

where  

If K < n (A is n Y n), the remaining (n - K )  eigenvalues of (A Jr BL) a r e  

always equal to  corresponding eigenvalues of A and a r e  not infl-ueneed 

by  any choice of L. The methods developed in Chapter 4 for  finding a 

detector gain can be  applied in the i r  dual form to the problem ~f 

selecting L to specify eigenvalues of (A -t BL). The design of detection 

f i l te rs  involves m o r e  than just stability and specification of eigenvalues . 
The special  propert ies  of detection f i l te rs  and the concept of sensor 

decoupling i n  Chapter 4 have interesting dual interpretations in the 

context of l inear feedback control. F o r  the r eade r  ' s information these 

interpretations a r e  discussed in Sections 6.2.1 and 6.2.2. It should 

b e  repeated, however, that the f i r s t  objective in feedback restructur ing 

is to generate a s  quickly a s  possible a feedback ma t r ix  L which. ensures  

stability of the closed-loop system. Hence, the subject of pr inlary 

concern i s  the computation involved in the algorithms for  generating E. 

As  will  b e  see.n in Section 6.3, algorithms based on detection f i l te r  

theory usually requi re  m o r e  computation than algorithms which a r e  

concerned solely with ensuring s table  closed-loop poles. 

6 .2.1 Construction of Scalar-Input, Scalar-Output Subs 

by  State Feedback 

In dual f o r m  the bas i c  resu l t s  f o r  detection f i l ter  design 

in Section 4.3 .1  show how it is possible through s ta te  feedback to 
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obtain scalar-i.nput control  over  a s c a l a r  output of the  pla.nt. It is 

easiest to  explain scalar-input control  in  t e r m s  of Laplace t r ans fo rms .  

be the s c a l a r  output of in te res t ,  where  h is a t ime-invariant n-vector.  

The simplified closed-loop sys t em dynamics given by (6-16) may 

rewritten a s  

i( t)  = (A + BL) x(t) + Budc(t) 

~ 1 7  e r e  

u dc (t) = LC c(t) 

is that portion of the  des i red  control  s ignal  which is due to  the  command 

signal e(t). Then the  t r a n s f e r  f r o m  control  s ignal  to  output in Laplace 

t r snsforn ls  is 

w h e r e  

The right s ide  of (6-21) can b e  expanded t o  yield 



where  Udci(s) is the ith component of Udc(s) and 

Fi(s) = hT[ l s  - (A + BL) ] 'l bi 

with bi the ith column of B. Fi(s) is a sca la r  rational function of s 

represent ing the closed-loop t r ans fe r  f rom the ith component of the 

control vector to  the output. In general, the Fi(s)  a r e  different and 

the complete control vector must  be known in o rde r  to  determine the 

output. Suppose, however, the F i (s )  differ by only a constant, e.  g. , 

where  

In this  case  the output vh(t) does not depend on the  full control vector 

u (t) ,  but only on the l inear sca la r  function rlT udc(t). This situation dc 

wil l  be r e fe r red  to  a s  sca la r  control of vh(t). 

Comparison of (6-24) and (6-27) makes it c lear  that 

sca la r  control yields a s impler  input-output t r ans fe r  function. In 

effect a multiple-input, scalar-output relationship is reduced .to a 

scalar-input, scalar-output relationship. Fur thermore ,  the fact that 

v (t) depends only on a sca la r ,  l inear combination of the components h 

of u (t) implies that t he re  is freedom left in u (t) t o  per form dc d c  



additional control actions without disturbing vh(t). F o r  example, 

suppose L is selected so  that a l l  its columns except the f i r s t  a r e  
C 

orthogonal to q .  Let q and the f i r s t  column of LC have an inner 

p rc  duct  of one. Then 

and 

qT UdC(t) = vT Lcc( t )  = [1, 0, . 0 . .  01 ~ ( t )  = cl(t) 

(6-30) 

w h e r e  c.(t) i s  the first component of c( t) .  This result  shows that vh(t) 

responds only to the first component of c( t) .  It is not influenced by 

any other component of the command signal. Since q and the columns 

oi Lc a r e  r-vectors,  LC can have a s  many a s  (r - 1) independent 

coiurnns which a r e  orthogonal to  q. Suppose c (t) is an r-vector (rc = r)  

and LC is chosen to  satisfy (6-30) with al l  columns of LC independent 

(L is r X r). Then the command components {c2( t ) ,  . . . , cr(t)} can 
C 

produce (r - 1) independent control actions, none of which affect the 

csutrp~lt vh(t). 

The sca lar  control property is the dual to  the fixed- 

direction e r r o r  property of a detection fil ter.  The resul ts  of Chapter 4 

show that for any controllable output of the form of (6-1 8) (i. e. , for  any 

h snot lying in the uncontrollable space of B) it is always possible to find 

an L which achieves sca lar  control. The dual of Theorem 4.1 shows 

that in  addition to obtaining sca lar  control, a l l  the eigenvalues of 

(-4 * BL) can be almost arbi trar i ly specified if (A, E) is a controllable 

pair. U' (A, B) is not controllable then K eigenvalues can be  specified 



where K is given by (6-17). This follows f rom remark  4)  in Section 

4 .3 .1 .  In other words sca la r  control can be achieved while sti l l  

maintaining control over the maximum number of eigenvalues of 

(A + BL). This resul t  is most easily verified by considering t!ne 

t ranspose of the t ransfer  function in (6 -21) 

Let A ~ ,  B ~ ,  LT, and h correspond to A ,  C ,  -D, and f of Sec1:ion 4 .3 .1 .  

T Let v be the detection order  of h with respect  to  (AT, B ) and let g 

be i ts maximal generator.  If L satisfies the equation 

and BTh # - 0 ,  then 

with 

where the a r e  determined by the relation 

h = a l g  + ... T v - 2  T V - P  
+ "v-1 [ A ]  g + b I  g 

(6-35) 

and the pi a r e  a rb i t ra ry .  Transposing (6-33), i t  i s  c lear  that for L 

satisfying (6-32), (6-21) reduces to  the form of (6-27) with 
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Ir? genera l  if 

T  T j h  = I3 [ A  I - j = 1, . e e ,  P - 1  
(6-37) 

B ~ [ A ~ ] ~  h + .o- 

t h e n  

If (6 -37)  is not satisfied f o r  any p ,  then h l ies i n  the uncontrollable 

space  of B, and vh(t) is not controllable regard less  of L. 

The  resu l t s  of Sections 4.3.2, 4.3.3,  and 4.3.4 a r e  

applicable to feedback design f o r  control of multiple outputs. Consider 

a n  B -dimensional output vector 

w h e r e  H is an P X n time-invariant mat r ix  



If 1 r and the se t  of vectors  { h  . . . . hQ] a r e  output separable  with 

T respec t  to  ( A ~ ,  B ) (Definition 4.9), it is possible to  find a feedback 

gain L which produces a closed loop t r ans fe r  of the fo rm 

where  

with the  pi  defined by condition (6-37) f o r  each hi. The Fi i (s)  a r e  

s c a l a r  rational functions of S of the fo rm of (6-39). If the hi are 

T mutually detectable with respect  t o  ( A ~ ,  B ) n eigenvalues of (A i- BL) 

can be  specified almost  a rb i t ra r i ly .  If the h. a r e  not mutually detect-  
1 

able,  control over certain eigenvalues will  b e  lost in achieving (6-44)-  

Such uncontrolled eigenvalues can be  identified a s  described in 

Section 4.3.4. 

Now let c (t) be  an Q -vector and choose L C  to  be  a 



H' BLc = I (6-46) 

This equation always has a solution fo r  LC because the hi a r e  output 

separable, which implies r k  [ HrT B] = 1 . One solution is 

T ,T -1 = B~H'~[H'BB H ] (6-47) 

The invt:rse exists because r k  [ H 'B] = 1. With this  LC and the 

L,aplaee t ransform of (6-201, (6-44) becomes 

@r i n  ccmponent fo rm 

This means that each component of v (t) i s  controlled exclusively by H 

%he corresponding component of c (t). A multiple-input, multiple-output 

sys tem has thus been reduced to a s e t  of scalar-input, scalar-output 

subsystems. 



6.2.2 Effector Decoupli.ng 

The concept of output decoupling introduced in Seetion 

4.3.6 has  a dual interpretation which leads to  the idea of effector 

decoupling. The r e su l t s  on output decoupling a r e  presented in this 

section in the i r  dual fo rm and interpreted in the context of l inear s t a t e  

feedback control. The main reason f o r  discussing this mater ia l  is to 

ca l l  the r eade r ' s  attention to  the interesting dual interpretations s f  

previous resu l t s .  A second reason i s  that the algorithm for  generating 

effector decoupling feedback control is somewhat s impler  and nlore 

generally applicable than the algorithm necessary to  implement the 

scalar-input,  scalar-output control described in Section 6 . 2 .  1, a s  w i l l  

be  seen in Section 6.3. 

Loosely speaking, effector decoupling means that 

individual effectors control independent pa r t s  of the sys tem.  The 

following two definitions formalize the concept of effector deco~.plling. 

Definition 6.1. The  sys tem described by (6-19) i s  de -  

fined to  be effector decoupled if the controllable space of each 11 
i 

(the ith column of B) does not intersect  the controllable space of any 

other column. 

Definition 6.2. The ma t r ix  pa i r  ( A ,  B) is define13 to be 

effector decouplable if t he re  exists some  feedback gain mat r ix  'Lid suck 

that the ,closed-loop sys tem (6-19) is effector decoupled. 

The dynamic behavior of an effector decoupled sys tem 

is best  i l lustrated by t ransforming the s t a t e  space to  a special  

coordinate f rame.  The transformation can b e  generated by usirrg the  

dual f o r m  of the algorithm of Appendix C. The s a m e  resul t  i s  ctbtained 



i f  the al.gorithm as  given is applied to the transposed matrix pair 

( (A + BLF, BT ) . The transformed matrices have the form 

and 



where x i  is  the dimension of the controllable space of b. with respect 
1 

to (A + BL). The block diagonal form of (6-51) i s  a result of the fact 

that the controllable spaces fo r  the bi a r e  a l l  nonintersecting. If the 

transformed state vector is partitioned to conform with the blooks in 

(6-51) 

then the equation for each decoupled subsystem is 

The form of (6-51) assumes that (A + BL, B) (or equivalently (A, B) ) 

i s  a controllable pair.  If (A, B) is not controllable, the control'lable 

portion of the system can be isolated by applying the dual form of the 

transformation used in Lemma 4.4.  Then the above transformation 

can be applied to the controllable portion. The general form in this 

case is 



T w i t h  ii given by (6-54) and Pi by (6-52). The R i  a r e  associated i i 

with the uncontrollable portion of the system. 

The resul ts  of Section 4.3.6 concerning output 

decoupl.able system-s can be applied in their dual forms to the study of 

effector. decoupling. The following definition is the dual of Definition 

4 12 for. output decoupling order .  

Definition 6.3. The effector decoupling order  of bi, 

the ith column of B, is defined to be the smallest positive integer 

value o:? j such that 

r k [ ~ ,  AB, . . . . A~-'B, ~j b.] = rk[B,  AB, . . . . 
1 ~ j - l  B] 

(6-59) 

It is c lear  that decoupling order  is invariant under 

coordinate transformations, si.nce the ranks of the matr ices i.n (6-59) 

are so ..invariant. It was noted in Section 4.3.6 that output decoupling 

order is invariant under replacement of A by (A + D"C) for  any D". 

IE. the present context this means that effector decoupling order  is  

invariant under replacement of A by (A + BL) for  any L. Note that 

for the decoupled system give.n by (6-57) to  (6-58) the effector 

t h rdecoupling o rder  of the i column of B i s  n i  and 



where 

K = rk  [ B, (A + BL) B, . . . , (A + BL) n-1 B 1 (Ci - 6 k )  

By invariance under coordinate transformations the effector d ecoupling 

order of bi must likewise be u Further,  i '  

K = rk[ 8, ( m i  8 ,  . . . , (A + BL)"-~  B ] 

= rk [ B, (A + BL)B, . . . , (A + BL)"-~ B] 

= rk  [ 8, AB, . . . , ~ " - ' l  B] (6-62) 

This is t rue  for  any L and follows from the dual of (4-87). 

Now if (A, B) is effector decouplable, there exists rmme 

L which produces a decoupled closed-loop system. Si.nce condi-l;ion 

(6-60) holds fo r  the decoupled system, it must hold fo r  the pair (A, B) 

a s  well by virtue of the invariance properties of the x i  and K . 'This 

means that a necessary condition fo r  (A, B) to be effector decouplable 

is that the sum of the decoupling orders  of all  the bi must be equal to  

the dimension of the controllable space of B. This condition can be 

shown to be sufficient by transforming to a standard form. If the 

above condition holds, the dual of the transformation in Appendix C 

will transform A and B into the form 



w hth 

0 

0 - 

a iil 
1 

w h e r e  K .  2 K and is given by (6-58). It is easy  t o  s e e  now that  the 
J i 

decoupl.ed f o r m  (6-57) can b e  obtained f r o m  (6-63) t o  (6-66) by choosing 



f o r i ,  j = l ,  ..., r .  The q, for i = 1,  . . . , r a r e  a rb i t r a ry .  

These observations establish the following theorem. 

Theorem 6 . 1 .  The mat r ix  pair  (A,  B) i s  effector 

decouplable if and only if 

where  K is the effector decoupling order  of bi and K (given by (6-56) ) i 

is the dimension of the controllable space of B. 

This theorem is the dual of Theorem 4 .7  with a slight 

generalization to  include noncontrollable sys tems.  

In Section 4.3.6 it was shown that a sys tem representa-  

tion could b e  enlarged to  obtain a decouplable form.  Such enlargement 

is  not appropriate here .  It was noted in Section 4.3.6 that the added 

portion of the representation would not be controllable. In this  

situation the added portion of the sys tem would not be observable. But  

obtaining an effector decoupled sys tem depends on s ta te  feedback. 

State feedback in turn  depends on knowing the s ta te  of the sys tem.  

Nothing i s  gained by enlarging the representation, because the re  w i l l  

b e  no information available about the s ta te  of the added portion of the 

representation, which is unobservable. 

The transformation of Appendix C was convenient for  

establishing Theorem 6 . 1 ,  but in pract ice it is not necessary to apply 
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this  transformation t o  find a feedback gain which produces a decoupled 

system In the next section various algorithms fo r  generating feedback 

gams w i l l  be discussed. Among them is an  algorithm which produces 

a d e c o u ~ l e d  closed-loop sys tem when the open-loop sys tem is 

decouplable. If the  sys tem i s  not decouplable, the algorithm will  

acn ieve decoupling fo r  a s  many effectors a s  possible. 

6.3 A - lgorithms for  Generating State Feedback Gains 

This section discusses  three  algorithms for  generating constant 

l i ~ e a r  s ta te  feedback gains. They a l l  have the capability fo r  achieving 

tlec priwlary goal stated at  the beginning of this  chapter,  namely closed- 

loop stability for  the controllable portion of the sys tem.  More specifi- 

cally, any of the algorithms can b e  used to specify almost  a rb i t ra r i ly  

al.1 of 4 3 2  closed-hoop poles of the controllable portion of the sys tem.  

The algorithms differ in two respec ts .  F i r s t ,  the computational 

requirements  for  implementing them a r e  different. Second, the closed- 

loop sys tems they produce will have different s t ruc tura l  character is t ics ,  

i, e .  , the s t ruc ture  of subsystems and dynamic coupling among them. 

'The f i r s t  algorithm is simply the dual of the method developed 

i3 Chapter 4 (and Appendix A )  f o r  generating a detector gain. The 

s t ruc ture  of the resulti.ng closed-loop sys tem is described in Section 

6,2.1. Central  attention is focused on a se t  of outputs a s  given by (6-42) .  

TKB the c'losed-loop system each component of the output i s  independently 

controlled by a sca la r  input. The amount of computation involved in 

in~plem~?a?ling this  algorithm i s  evident f rom the step-by-step outline 

in Section 4.3.5. A s  will  b e  seen la ter ,  it appears  that this  algorithm 



i s  the most time-consuming of the th ree  if separabili ty and mutual 

detectability must be investigated. 

The second algorithm produces the effector decoupling described 

in Section 6 . 2 . 2 .  If the system is  decouplable the resulting closed-loop 

sys tem will be fully effector decoupled. This algorithm is based on the 

s a m e  orthogonal reduction procedure used in Appendix A .  Thf general  

procedure and its propert ies  a r e  fully described in Appendix A .  Only a 

brief review specialized to the present  situation will be presented he re .  

Basically the null space of a symmetric  positive semi-definite matrix 

is sequentially enlarged to contain the  vectors from an ordered se t .  In 

this  case  the columns of the matr ix  

taken f r o m  left to  right form the ordered s e t  of vectors.  The procedure 

begins with any n X n symmetric  positive definite matr ix Q1 (the 

identity matr ix i s  a simple choice). An auxiliary vector is de f~ned  b+y 

This vector i s  nonzero because bl is nonzero and all is positive 

definite. A new symmetric  positive semi-def inite matr ix  which 

contains b in i ts  null space is defined by 1 



The next auxiliary vector is 

and if w # $: a new symmetr ic  positive semi-definite matr ix  which :2 1 

contains both bl and b2 in i ts  null space is 

If w~~ = 0 ,  b is already in the null space of 5221 and - 2 

For notational convenience the matr ices  and auxiliary vectors a r e  

double subscripted for  easy association with the columns of W .  The 

f i r s t s u b s c r i p t  r e f e r s  to the column of B, and the second subscript 

r e f e r s  to the power of A (plus one). F o r  example, Q.. and w a r e  
1J i j 

j- 1 a s soc ia tcdwi th thevec to r  A bi. A g e n e r a l i t e r a t i o n i n t h e r e d u c -  

$ion procedure is a s  follows: 

1) With Qij f rom the previous iteration form the auxiliary 

vector 

w.. = n . .  A J - ~  bi 
1J 1 J 



2) Define the new matrix by 

T 

if wij # 2 
- 

"i+l, j 
- (6-79) 

if w.. = 0 

for i < r (r is the number of columns in B) 

(ii) if i = r 

i f w  = O  
r j  - 

and return to step 1). 

Using the Schwarz inequality and induction it can be shown that 

every nij is positive semi-definite if the initial matrix is at least 

positive semi-definite. In this case the initial matrix was taken to be 

positive definite. The positive semi-definiteness of SZii ensures that 

wT  Aj-1 
i j  b i =  0 if and only if w.. = 0. 

U - 
The orthogonal reduction process terminates when a l l  inde- 

pendent columns of W have been considered. The termination point is 

signaled in one of two ways. The process is obviously terminated if 

at some point Qij = 0. This means that n independent vectors have - 
been processed. Since W is n X (r n), there can be no more  than n 

independent columns. When the process terminates with a zero  matrix 

it implies that (A, B) is a controllable pair.  The process can terminate 



on a nonzero matrix if it becomes clear that there a r e  no additional inde- 

pendent in the remaining columns of W. The cyclic property 

sf the  c ~ : ~ u m n s  of W make it possible to identify such a termination 

point. Fo r  example, if at  some poi.nt w = 0 ,  this means that A k-1 
jk - j 

is linear'ly dependent on the preceding columns in W. But then A' b.  
J 

for a l l  i 2 k - 1 will also be dependent on the preceding solumns in W, 

and as  a result w.. = 0 for al l  i 2 k - I. Since 0 . .  remains unchanged 
J 1  - J 1  

i 
i f  wr . = 0, it is not necessary to even consider the vectors A b. for 

j i  -. J 

i > - k - I. In short,  if w = 0, the reduction process terminates for b kj - j 

a n d  a l l  remaining colum.ns in W ge.nerated by b. can be deleted from the 
J 

ordered set .  When the process has so  terminated for  every column of 

B, it is c:ompletely terminated. If at this point SZ.. # 0 ,  then (A, B) is 
1J - 

not a controllable pair.  The range space of the final SZij i s  the 

uncontro'llable space of B with respect to A. By counting the number of 

ac tua l  reductions (the number of times w.. # 0)  one obtains the 
U - 

diLmension of the controllable space of B (rk W). 

The last nonzero auxiliary vector for each column of B has 

properties similar to the detection generator of Chapter 4. These 

vectors can be used to generate the equation for the feedback gain 

matrix. Let k. be the integer for which 
J 

and 



To simplify notation define 

gj 
= w  jk. 

J 

It should be  noted he re  that if b .  is linearly dependent on the other 
J 

columns of B, then w .  = O and the re  will  be  no g. for  that b . .  I n  this 
31 - J 3 

c a s e  (A,  B) cannot be  decouplable because those columns of B which 

a r e  dependent will  always have intersecting controllable spaces 

r ega rd le s s  of the feedback. This algorithm can s t i l l  be  used to  

generate  a feedback gain. To avoid unnecessary complication this 

case  will be discussed separately la te r .  Until then it will  be as,c;urned 

that a l l  the columns of B a r e  independent s o  that 

and the re  is a nonzero g fo r  every b. .  
j J 

F r o m  the  reduction procedure it is known that g .  is orthogonal 
k. - 1 J 

t o a l l t h e c o l u m n s o f W p r e c e d i n g  A b Specifically 
j ' 

and if j > 1 
k .- 1 g T ~  J bL = o I = 1, ..., j - 1 

A s  noted ea r l i e r ,  the positive semi-definiteness of G? a.nd (6-131) 
jki 

J 

ensures  that 



This fact along with (6-85) shows that the vec tors  ( g  j, A T gj,  . . e 

k.-1 
. . , [ A ~ ]  gj} a r e  a l l  l inearly independent. Fu r the rmore ,  it i s  

easily seen  f r o m  (6-85) that  

and 

k .  k.-1 
gT(n + BL) J 

J 
(A + BL) 

= gj A 

f o r  any L. Suppose L is chosen t o  sat isfy  the  equation 

for some s c a l a r s  p . .  . Then 
J L  

- T ... - k.-1 
- - Pjl g j  - Pjk. gT (A + BL) 

J J 

from which it can b e  seen  that  k .  eigenvalues of (A + BL) a r e  given 
J 

by the roots of 



It is  possible to  specify (kl + . . . + kr) eigenvalues (k. at a time) 
J 

by choosing L to  satisfy r equations of the fo rm of (6-90). Combining 

these  equations into a single mat r ix  equation yields 

where 

F r o m  (6-81) it can be  verified that the mat r ix  premultiplying L ii? 96-93) 

has  the triangular form 

(6-95) 

By vir tue of (6-87) the main diagonal elements in this mat r ix  a r e  a l l  

nonzero, s o  the mat r ix  is always nonsingular . This proves that (6-93)  

always has a unique solution. The diagonal fo rm of (6-95) makes it 

possible to  solve (6-93) most  easily by s tar t ing with the  bottom row 

and working up. Now 



so t h e  nu.mber of eigenvalues which can b e  specified by this  method is 

the maximum possible number. 

It will  be  shown shortly that the closed-loop sys tem with feed- 

back gait1 L given by the so1utio.n of (6-93) wil l  be  completely effector 
k . - l  

decoupled if and only if g.A bl = 0 f o r  a l l  j and 1 such that j 1. 
k.-1 J 

But even if g.A b # 0 fo r  some 1 # j this  does not necessar i ly  
3 1 

mean that the sys tem cannot b e  decoupled. In some cases  it i s  possible 

to modify g and form a new g ' which has the s a m e  orthogonality 
j j 

propert ies  a s  g .  in (6-85) and (6-86) and in addition sat isf ies  
J ' ~ ~ 5 - l  bl = 0 for  a l l  1 $. j . By making this  modification in g where  

j 
J 

possible, one ensures  that the L given by (6-93) achieves a s  much 

effector decoupli.ng a s  possible. Specifically, g. can (and should) be  
J 

modified if the following two conditions hold: 

k . - l  
( i )  gT A b1 # 0 fo r  some 1 > j 

Let b , . . , b } be the s e t  of a l l  vectors  fo r  which (i) and (ii) hold. 
1 P 

Define a new vector 

The s c a l a r s  q a r e  the components of the p -vector 



which sat isf ies  the mat r ix  equation 

This equation always has a unique solution because the product matrix 

postmultiplying q t T  has  the s a m e  triangular form a s  (6-95). The gl 
3 

defined by (6-97) i s  used in place of g .  in (6-93). Note that g! b a s  the  
J J 

s a m e  orthogonality propert ies  a s  g in (6-85) and (6-86) and in  
j 

addition even f o r  1 > j 

F r o m  these  propert ies  it can be  shown that the algorithrrr w i l l  

produce an effector decoupled closed-loop sys tem when (A, B) is  
k.-1 

decouplable. F r o m ( 6 - 8 5 ) a n d  (6-87) it i s  c l e a r t h a t  A b .  is  
k . -2  J 

independent of the columns of [ B, A B ,  . . . , A B] . This shows 

that the decoupling o rde r  of b .  is  grea ter  than o r  equal to  k . .  If K . is 
J J J 

the  decoupling o rde r  of b., then 
3 

and 

F r o m  (6-96) and Theorem 6 . 1  it may be  concluded that (A, B) is 

3 05 



decoupla.ble if and only if equality holds i n  (6-102). But by (6-101) 

equality holds in (6-102) if and only if 

Hence, (A, B) i s  decouplable if and only if (6-103) holds. If (6-103) 

holds t h e n  

k.-1 g i T ~  J bl = 0 f o r  a l l  2 f j (6-104) 

by the following reasoning. In view of (6-86) and (6-100) the only b1 

for which (6-104) could b e  violated is if 1 > j and k. > kl .  But if 
r, k:-- l J 

g; A 
b1 # 0, then K~ > k.  by the s a m e  reasoning used t o  establish 

J 
K . 2 k.. This  would imply x1 > kl which contradicts (6-103). There-  

3 J 
f o re  (6-103) implies (6-104), and one may  conclude that  (A, B) is 

decoaaplable only if (6-104) holds. 

18: (A ,  B) is decouplable, the closed-loop sys t em with L given 

by (6-933 (with g.  replaced by g! where  appropria te)  can now b e  
J J 

shown to b e  effector decoupled by introducing a t ransformation defined 

bg7 



7' where Td2 is an (n - K )  X n matr ix  chosen s o  that the columns of Td2 

f o r m  a basis  f o r  the uncontrollable space of B. When this t ransforma- 

t ion  is applied to (A + BE) and B, the resulting f o r m s  a r e  

(A + BL) 

where 



ki- 1 
( recal l  g l T ~  b i  # 0 )  and R is an (n - K )  Y (n - K )  mat r ix  satisfying 

Td2(A + BL) = Td2A = RTd2 (6-110) 

From the block diagonal fo rms  of ( A  + BL ) and it can be  seen  that 

the algorithm has produced an effector decoupled system. 

If' ( A ,  B) is  not a decouplable pair  ( 6 - 1 0 4 )  will  be  violated for  

some b for which 1 > j and K( 2 k .  > kl . When the transformation 
B J 

(6-405) is applied in this  case ,  ( A  + B L )  wil l  have the same  form a s  

( 6 -  106 )  kut B will  have the m o r e  general  form 

The equation fo r  each subsystem i s  

Note  that 6 can be  nonzero only if x B  > kl . This means if K = kl jJ a 
then u (t) controls only the lth subsystem and has no influence on 

d e l  

the 0the.r subsystems.  



In the case  where r k  B < r ,  indicating a l inear dependence 

among the columns of B, the algorithm can s t i l l  be  used to  g e n ~ r a t e  

an L.  Suppose r k  B = r '  < r.  There  will  then be only r '  nonzero 

generators  g and only r '  equations such a s  (6-90) for  L.  The mat r ix  
j 

premultiplying E in (6-93) will no longer be  square,  but will  have 

dimension r ' X r. It can be  shown f rom (6-85) and (6-86) that xhis 

mat r ix  always has rank r ' . This ensures  that the equation for  L will  

always have a solution, but it will not be  unique. 'As mentionecl ear l ier ,  

this  situation precludes the possibility of obtai.ni.ng an effector 

decoupled sys tem because (A, B) is not decouplable. 

It s e e m s  cer tain that this algorithm will  requi re  l e s s  cornputa- 

tion than the f i r s t  one. It is not necessary t o  generate the auxiliary 

mat r ices  corresponding to K and C '  of Chapter 4. Nor i s  it necessary 

to  worry  about separabili ty and mutual detectability. The solution of 

the equation for  L is made s impler  by the triangular form of 66-95). 

The modification of the g.  s eems  to requi re  some additional cornputa- 
J 

tion, but this  is not cer tain because the  use  of the modified generators  

g V j  introduces additional ze ros  in off-diagonal elements of the ma t r ix  

in (6-95). In fact,  if the sys tem is decouplable, this  mat r ix  will  be 

purely diagonal. It should be  mentioned that the most  efficient way  to 

modify the g .  is to  s t a r t  with j = r - 1 (g never needs modification) 
3 r 

and work backward replacing g.  with g '  a t  each step. In this  way  
J j 

one obtains the largest  number of off-diagonal ze ros  in the mat r ix  

postmultiplying u t T  in (6-99). It i s  possible to  show that none of the 

g .  will need modification if the s tar t ing mat r ix  for  the reduction 
J 

procedure all i s  properly chosen. Unfortunately no s imple w2.y of 

finding such a all is yet available. 



'The third algorithm for  ge.nerating a feedback gain matrix is  

concerned only with specifying poles of the clos ed-loop system, rather 

than producing any specific kind of subsystem structure (e. g., decoupled 

effectors). It i s  of interest for feedback restructuring because it allows 

the possibility of specifying some poles of the closed-loop system as  

the algorithm proceeds, rather than having to wait until all the computa- 

tion is completed a s  in the previous two algorithms. This feature will 

be described in more detail later.  

The third algorithm is  computationally very similar to the 

decoupli ng algorithm just presented. The orthogonal reduction 

prcscedurse is again employed. The columns of W make up the ordered 

se t  of vectors except the ordering of the set  is different. In this case 

the ordered set of vectors is {bl, An-l  Abl. ..., bl' b2' ..., An- 1 brl 
The reduction process proceeds a s  before with appropriate changes in 

the condition fo r  termination. After starting with bl ,  the f irst  inter- 

n~edia te  termination point is reached when w = 0 for some j (the l j  - 
double subscripts on wij and 0 . .  have the same significance a s  

1J 
previously). All further vectors generated by bl may be disregarded 

a n d  the process continues with b The process is completely terrni- 2 "  

nated when either a i j  = 0 or  the termination point associated with b is  - r 

reached li. e . ,  w = 0 fo r  some j). The terminating Qi j  has the same r j  - 
significance a s  in the decoupling algorithm. Feedback generating 

vectors a re  again defined a s  the last .nonzero auxiliary vectors 

associated with the co1urn.n~ of B 



In general  the  k .  h e r e  a r e  different f rom those in the decouplling 
J 

algorithm, but it is still t r u e  that k l  + . . . + kr = K = r k  W. TI- e 

equations for  L have the s a m e  form a s  (6-90). It is not necessary to 

modify the g F o r  this  algorithm it is m o r e  likely that t he re  will be 
j" 

l e s s  than r generating vectors  g This will certainly be the case  if 
jo  

r k  B < r,  Even when r k  B = r the re  will be  fewer than r gener'atixag 

vectors  if b for  example, is contained in the  combined controllable 
j' 

spaces  of the previous columns of i3 (i. e . ,  the controllable space s f  

[ b l  . . . , b .  ] ). In this case  w = 0 and the re  will be  no g. .  A s  
3 - 1  j l  - J 

noted previously, the presence of less  than r generating vectors  simply 

means the solution of the mat r ix  equation fo r  L is not unique. 

Just  a s  for  the decoupling algorithm the total  number of eigen- 

values of (A + BL) which can b e  specified is the maximum pass-ble 

number,  K = r k  W.  The significant feature of this algorithm w l ~ i c h  

makes it worthy of mention is  that it i s  possible to specify some eigen- 

values of (A + BL) before the orthogonal reduction procedure is 

completed and without f e a r  of introducing unwanted eigenvalues . To 
clar i fy this statement some background information is necessary.  A t  

any point in the reduction procedure for  either of the last  two algorithms 

it is possible to  use the auxiliary vectors  to  immediately wr i te  tlown a n  

equation for  L which will  specify a c e r t a i n  number of eigenvalues of 

(A + BL). F o r  example, at  any point in the decoupling algorithm one 

has at  hand the last nonzero auxiliary vectors fo r  each b say  j' 
w j k , .  # 0 .  These vectors  have the s a m e  orthogonality propert ies  a s  

J 
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theg. in(6-85)  and(6-86)  except that  k. i s r e p l a c e d b y k '  Byus ing  
3 J j' 

thew. i n t h e s a m e w a y t h a t t h e g .  w e r e u s e d i t i s p o s s i b l e t o w r i t e  ~ k '  . 
3 3 

down a n  equation f o r  L corresponding to  (6-93). The solution of this 

equation will  yield a mat r ix  (A + BL) in which (k' + . . . + k',) eigan- 1 
values can be  specified by choice of the coefficients p i j  The problem 

with  this: p remature  specification of eigenvalues is that when the 

reduction procedure is not complete (k '  + . . . + k t r )  < X ,  and the 1 

number of eigenvalues s o  specified is l e s s  than K .  The (n - K )  eigen- 

values of A associated with the uncontrollable space of B cannot be  

altered by the feedback. But this s t i l l  leaves K - (k '  + . . . + k t r )  

eigenvalues of (A + BL) which a r e  determined by the feedback and yet 

a r e  not explicitly specified by the p There  is .no s imple way of ij '  

ensuring these uncontrolled eigenva lues will  be stable.  

XJsing the third algorithm it is possible to  specify a number of 

eigenvalues at  each i.ntermediate termination point without in t roduchg 

uncontrolled eigenvalues. Suppose the f i r s t  intermediate termination 

point ha:; been reached, s o  g is known. Now introduce feedback in 1 

just the :Sirst control  component s o  the closed-loop sys tem matr ix  is  

(A + bill) where 1 i s  an (1X n) row vector given by 
-1 

Then 



which shows that kl eigenvalues of (A + blLl) a r e  given by the roots of 

1 kl-1 
S 

+ Plk  
+ ... 

+ P l l  
= 0 

1 
(6-118) 

But 

and this  i s  the maximum number of eigenvalues which can be  influenced 

by feedback in only the f i r s t  control component. A11 the remaining 

(n - kl) eigenvalues of (A + blLl) must  be the s a m e  a s  those of A .  

Therefore  no uncontrolled eigenvalues have been introduced. When 

the second intermediate termination point is  reached, feedback: can b e  

allowed in the f i r s t  two control components and the number of eigen- 

values which can be specified is  

A gain no'uncontrolled eigenvalues a r e  introduced because a l l  remaining 

eigenvalues remain unchanged. The process  can b e  repeated al; each 

intermediate termination point. The intermediate specification of eigen- 

values may b e  valuable in situations where instabilities in the open-Hoop 

sys tem threaten to  exceed acceptable bounds before the orthogonal 



reduetien? process can be completed. By specifying eigenvalues at 

intermediate termination points unstable eigenvalues may be eliminated. 

131 couri;e, the algorithm need not s tar t  with b l .  The columns of B 

can be arranged in any order.  If an unstable eigenvalue of A is known 

or suspected to be associated with the controllable space of a particular 

caBurnn of B, then the algorithm should begin with that column. 

The structure of the closed-loop system produced by the third 

algorit.th1.1~ is more obvious if  a transformation of the form of (6-105) is 

applied. When this i s  done, ( A  + B L )  = T(A+ BL)T-' has the same 

form a s  (6-106), but has the form 

where 

The off-diagonal vectors K.. have no simple form, in general. If there 
1J 

a r e  fewer than r generating vectors, say r '  < r, then there a r e  only r '  

of the Pi blocks in ( A  + BL)  and B has the form 



Although this algorithm is not desig.ned to yield any specific 

subsystem structure, it is possible to make some general remarks  about 

the type of structure it tends to produce. For  this algorithm the columns 

of W a r e  reordered so that al l  vectors generated by bl a r e  considered 

f i rs t ,  and so on. This tends to make the dimensions of the earl ier  

(lower indexed) PT smaller.  On the other hand, the decoupling 

algorithm tends to make the Pi roughly equal in size. In t e rms  of 

system structure this means that the decoupling algorithm tends to 

produce a parallel type of structure, whereas the third algorithm leads 

to  a cascade-type structure. A s  a simple illustration of this consider 

a third order system controlled by three independent control inputs, 

each of which can control the system acting alone. Suppose the three  

closed- loop poles a r e  specified to lie on the negative r ea l  axis at  

- ol ,  - 02, and - u3. The decoupling algorithm would produce a system 

of three independent f i r s t  order subsystems a s  shown in Figure 6- l (a) .  

The third algorithm would produce the cascade-type structure shown 

in Figure 6-l(b). 

It would appear that the cascade algorithm compares favorably 

with other pole assignment algorithms discussed in the literature. It 

is certainly computationally simpler than the straightforward approach 

of determining the characteristic polynomial of (A + BL) by expanding 
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(a) Decoupling Algorithm 

(b) Cascade Algorithm 

Figure 6-1. 
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the  determinant I IS - (A + BL) , sett ing the coefficients equal to 

some desired values, then solving the se t  of n nonlinear equations f o r  

the n - r elements of L.  It i s  a l so  s impler  than algorithms based on 

t ransformations which produce cer tain canonical ma t r ix  form:; (such 

a s  suggested in [ 2 3 ]  ). Although it i s  not necessary to  actually perform 

a complete s ta te  space transformation in such an algorithm, i t  is 

necessary  to  compute cer tain parameters  appearing in the canonical 

f o r m  of A, and then t ransform the feedback gain m a t r i x  back to  the  

original coordinate f r ame .  

There  is another pole assignment algorithm discussed in the 

l i terature  ( re fer red  to  a s  the spec t ra l  algorithm in [ 2 3 ]  ), which may 

be useful fo r  feedback restructur ing.  It is based on the Jordaii fo rm 

of the A ma t r ix  (the sys tem matr ix  f o r  normal  mode s ta te  var iables) .  

This algorithm allows assignment of a s m a l l  number of closed-loop 

poles (in some cases  a single pole) while leaving the remaining poles 

of the sys tem undisturbed. Hence, the algorithm can be  applied 

recursively,  specifying a s m a l l  number of closed-loop poles at  step. 

As noted previously in introducing the cascade algorithm, this would 

s e e m  to be  a desirable  fea ture  f o r  an on- line res t ruc tur ing  prctcess . 
The spec t ra l  algorithm has some computational disadvantages, how ever. 

In o r d e r  t o  specify a cer tain number of closed-loop poles, one musk 

f i r s t  determine an equal number of open-loop poles (eigenvalues of the 

A matr ix)  plus the corresponding eigenvectors of A. In general,  

determining eigenvalues of A will  requi re  solving the charactea-istie 

equation for  A, which is an nth o rde r  polynomial equation. N o l e  of 

the algorithms discussed previously in this  section requi re  knowledge 

of any eigenvalues of A .  
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Another disadvantage of the spec t r a l  algorithm i s  that it must  

be modified if A has  repeated eigenvalues. This suggests that for  a 

genera[  A mat r ix  it wil l  be  necessary t o  determine a l l  the eigenvalues 

i n  o rde r  to  check for  repeated eigenvalues before the cor rec t  algorithm 

can be implemented. This  requirement would increase the computation 

time necessary  before specifying the f i r s t  group of closed- loop poles,  

thus reducing the speed advantage offered by recurs ive  specification 

of poles. The cascade algorithm is applicable to  a general A matr ix ,  

asad it is not necessary to  have information about repeated eigenvalues 

o r  other s t ruc tu ra l  propert ies  in o rde r  to  implement it. 

Because of the necessity for  computing eigenvectors of A ~ ,  the 

computation required in the spec t ra l  algorithm increases  signi-ficantly 

when specifying a large number of poles. (Simon and Mitter [ 2 3 ]  

claim the increase  is exponential.) Therefore,  the cascade algorithm 

s e e m s  bet ter  suited to  specifying a large number of poles. It would 

appear ,  however, that if A happens to  b e  in a fo rm in which some 

eigenvalues can b e  readily identified, then the spec t ra l  algorithm 

would probably be the fastest  way of changing those part icular  eigen- 

values .. The spec t ra l  technique would be  especially valuable if some 

way  could be  found t o  identify quickly any unstable poles in the  existing 

system., s ince it would provide a way of concentrati.ng the feedback 

4nes"cucLuring efforts on stabilizi.ng those u.nstable modes.  



CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The purpose of this r e sea rch  was to  develop pract ical  methods 

of self -reorganizat ion which can give a complex linear dynamic sys tem 

the ability to  r e s t ruc tu re  itself t o  compensate for  fai lures  in  itij effectors 

and sensor s  and changes in dynamics. The ultimate goal of se1.f- 

reorganization is  to achieve the maximum reliability with the rrlinimurn 

amount of hardware by restructur ing the  sys tem to  make effective us e 

of a l l  hardware available a t  any given t ime.  The basic  approach taken 

in this  r e s e a r c h  is  t o  identify the fai lure  o r  change and then r e s t ruc tu re  

the sys tem based on that information. This approach is  in contrast  t o  

reorganization based on performance information. 

Chapter 2 demonstrates how the concepts of controllability and 

observability may be  used to evaluate the potential ability of a l inear 

sys tem to to le ra te  fa i lures  of i ts  effectors and sensor s .  A low 1.r bound 

is established fo r  the number of effectors and sensor s  a l inear t ime- 

invariant sys tem requi res  f o r  complete controllability and observability. 

Since the reorganization process  i s  based on information about 

the fai lures  o r  changes occurring in the system, the grea tes t  aftention 

was devoted to  the problem of detecting and identifying such events. The 

major  contribution of this  r e sea rch  is  the theory and design of tleteet Eon 

f i l t e r s  developed in Chapter 4. Detection f i l te rs  provide a pract ical  



way of detecting and identifying effector failures, sensor failures, and 

dynamic changes in a complex multiple-input, multiple-output linear 

sys tem.  The important features of a detection filter include the 

followinz: 

I) When a failure o r  change occurs the detection filter produces 

a vector e r ror  signal whose direction indicates the location of the 

f a ~ l u r e  or change, or at least narrows the location down to a small  

number of possibilities. An effector failure o r  a change in some 

paramel e r  in the dynamic equations of the system produces an e r ro r  

signa b i n  a fixed vector direction. This invariant direction indicates 

which effector is malfunctioning or  which parameter has changed. In 

some cs.ses the invariant direction may be associated with more  than 

one effector or  parameter,  in which case the location of the failure or 

change is narrowed down to those effectors o r  parameters associated 

wi th  t h e  invariant direction. In this situation the time-varying behavior 

of t he  er ror  magnitude often provides enough additional information to 

identify a particular effector o r  parameter from the set  of possibilities 

indica ted  by the invariant e r ro r  direction. A sensor failure does not 

produce a fixed-direction e r ro r  signal, but the e r ror  vector is 

constrained to lie in a two-dimensional invariant plane. This plane 

identifies the malfunctioning sensor. 

2)  In the absence of failures or changes in dynamics (or after 

they have been identified and compensated for) the detection filter 

produces an estimate of the state of the system. The estimate is 

asymp"toticallyica1ly stable in the sense that in the absence of disturbances 

the error in the estimate approaches zero  asymptotically. The 



detection fi l ter may therefore  s e r v e  also a s  a s t a t e  estimating 

f i l t e r .  

3) The poles of the detection f i l ter  a r e  under the control of 

the designer.  This  means the response t ime of the f i l ter  can be 

made  a s  fas t  a s  desired,  consistent with other considerations such a s  

noise disturbances and gain magnitudes. It also means that the f i l te r  

may b e  designed to  enhance the response t o  fai lures  o r  changes it is 

supposed to  detect, while suppressing the response to sensor  noise 

and plant disturbances . 
4) A detection f i l ter  (whose s ta te  dimension is equal to  that s f  

the sys tem)  has the potential to  detect a substantial  number of different 

events (failures and changes in dynamics). When a single detection 

f i l ter  is not capable of detecting a l l  possible events, i t  is mere ly  

necessary to  use additional f i l te rs ,  each designed to  detect a subset 

of the se t  of a l l  possible events. Because each f i l ter  has  the potential 

t o  detect a substantial  number of events, it should be  possible to 

detect a l l  possible events with a sma l l  number of f i l te rs .  F o r  the 

spec ia l  c a s e  in which the s ta te  vector of the sys tem is fully measurable ,  

a single detect ion f i l te r  can provide information about a l l  possible 

events -- effector fai lures ,  sensor  fai lures ,  and changes in dynamics - 
F o r  the m o r e  general  case  of a partially measurable  s ta te  vector ,  the 

number of different fai lures  a detection f i l ter  is capable of detecting is, 

loosely speaking, approximately equal to  the number of independent 

sensor s  in the sys tem.  In par t icular  situations it may b e  more o r  l e s s .  

In any case  a single detection f i l te r  can provide information about a l l  

changes in the dynamics of a l inear sys tem.  



5) The same basic theory is  applicable to designing detection 

f i l ters  for effector failures, sensor failures, and changes in dynamics. 

Fo r  delec:ling changes in dynamics, the detection filter is especially 

effective when the possible changes a r e  limited to a smal l  number of 

parameters. Even when applied to the general problem of identifying 

o r  4,rackirag unknown linear system dynamics, detection filter theory 

yields a n  identification method which appears comparable to the best 

tracking model methods now proposed in the literature. 

6) The computation required to design detection f i l ters  involves 

mainly the solution of se ts  of linear algebraic equations. It is not 

nee essar,y to solve differential equations -- either linear or  nonlinear. 

The computation is substantially less than that required for a Kalrnan 

filter, for example, which requires the solution of a R iccati equation. 

Chapter 4 develops a substantial body of analytical results on 

the struckure of detection filters.  The results have been developed 

from the viewpoint of actually constructing a detection filter.  A s  a 

resu l t ,  some of the algebra may be more  extensive than would be 

necessary if more sophisticated methods of mathematical analysis were 

used. However, the constructure viewpoint provided a good basis for 

the development of the design algorithms presented in Appendices A ,  B, 

and C. The material in Chapter 4 should continue to provide a good 

basis fo r  the future development of even more efficient design algorithms. 

Some of the more important results of Chapter 4 a r e  listed below. 

1'1 Theorem 4.1 is the basic result of detection filter theory. 

It guarantees that there always exists some detection filter,  with poles 

arbitrarily specified by the designer, which will detect any single 



fai lure  o r  change in the observable dynamics of a sys tem.  The other 

theorems and lemmas in Section 4 .3 .1  a r e  intermediate resu l t s  

leading to  the proof of Theorem 4.1.  How ever ,  some of them a r e  

important in f i l ter  design, and these a r e  mentioned in the next i tem. 

2)  Lemma 4.2 establishes the existence of detection generators ,  

the vectors  which play a cent ra l  ro l e  in the actual design of detection 

f i l te rs .  Theorem 4.2 irltroduces the basic  l inear algebraic eq~aation 

for  the e r r o r  feedback gain mat r ix  which gives a .detection fi l ter the 

invariant direction property.  The resu l t s  of Theorems 4.3 ancl 4,4 show 

how it is possible to  a rb i t ra r i ly  specify a l l  the poles of the detection 

f i l ter  while achieving the invariant direction property.  In addition, the 

proof of Theorem 4.4 shows how to actually determine the maximal  

detect ion generator,  which allows full specification of the poles of the 

f i l t e r .  The algorithm in Appendix A i s  based on the constructic~n used 

in that proof. 

3) Theorem 4.5 establishes the conditions under which it is 

possible for  a single detection f i l ter  to  detect a number of different 

events while allowing the poles of the f i l ter  to  b e  a rb i t ra r i ly  specified, 

(Such events a r e  defined to  be mutually detectable.) 

4) Theorem 4.6 establishes a method for  dividing the se t  of akl 

possible events into subsets  of mutually detectable events. A l l  the 

events in each subset can then be  detected by one detection f i l te r .  Often 

events which a r e  not mutually detectable can s t i l l  be  detected wi th  a 

single f i l te r  by allowing cer tain poles of the f i l ter  to  b e  fixed by the 

design process  ra ther  than specified by the designer.  Theorem 4 . 6  

provides the basis  f o r  identifying these unspecified poles and regrouping 
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sets of events so that any undesirable poles a r e  eliminated. This 

material is developed in Section 4 .3 .4 .  

TYhen detection filter theory is interpreted in its dual form 

t h e  results yield design techniques for determining linear state 

feedback laws for linear time-invariant systems. It is well known 

that if a linear time-invariant system is controllable, then a linear 

state feedback law can always be found which produces closed-loop 

poles in any desired location in the complex plane (complex poles 

must appear in complex conjugate pairs).  The techniques introduced 

in this research not only provide for specification of the closed-loop 

poles of the system, but also can produce several  interesting types 

of subsystem structure such a s  scalar-input, scalar-output decoupled 

subsystems or effector decoupled subsystems. Chapter 6 presents 

the algorithms for implementing these feedback control designs. Also 

presented is a third algorithm which is concerned only with fast specifi- 

cation of closed-loop poles. These algorithms form the basis for  

restrucl.uring of the feedback control loop to compensate for failures 

and changes in the system. The computation involved in implementing 

these techniques seems sufficiently simple to make their use feasible 

f o r  on-line restructuring. The results may also be of interest for 

off -line feedback design. 

7 . 2  :Recommendations for  Further Study 

'The next logical step for further research is to substantiate the 

theoretical analysis of detection filters and test  the feasibility of the 

f eedbaclc restructuring algorithms through computer simulation. It 



would also be  most  valuable to  design detection f i l ter  reorganization 

sys tems for  some example sys tems to demonstrate computational 

feasibility and performance in the presence of rea l i s t ic  disturbances.  

Areas  for  fur ther  analytical studies include the following: 

1) The concepts introduced in Chapter 2 mere ly  evaluate the 

supplementary redundancy of a sys tem after it is constructed. It 

should be  possible to develop these concepts to aid in the actual design 

of supplementary redundant sys tems.  

2)  It would be  useful t o  obtain m o r e  general  resu l t s  on the 

detection of nonseparable events a s  defined in Chapter 4. Such resul ts  

could lead to  methods for substantially increasing the number of 

different events a single fi l ter is capable of detecting. F o r  the ,general 

c a s e  of a partially measurable  s ta te  vector the number of s imple 

events (e. g. , one effector failure) detectable by a single f i l ter  is, wi th  

present  design methods, roughly the s a m e  a s  the number of independent 

sensor s .  Recall  that for  the case  of the fully measurable  s ta te  vector 

a single f i l ter  could detect a l l  the events being considered -- effector 

fai lures ,  s enso r  fai lures ,  and changes in dynamics -- potentially a 

much la rger  number of events than the number of independent sensor s .  

I t  s e e m s  reasonable to  speculate that a s  the  number of independent 

sensor s  increases ,  it should b e  possible to  construct a detection f i l ter  

capable of detecting substantially m o r e  events than the number of 

independent sensors .  

3)  The algorithms in Appendices A and B f o r  implementing the 

design of detection f i l t e r s  a r e  not intended to be the last word in eompu- 

tational efficiency. It s e e m s  reasonable to  expect that they can b e  



improved upon in this respect.  The extensive analytical results in 

Chapter 4 should be useful in developing new methods of implementing 

the theory of detection f i l ters  . Rapid computational algorithms will 

also be valuable for the design of linear state feedback laws for time- 

Envar iant linear systems. 

4) Chapter 5 discusses some simple methods fo r  processing 

the  detection filter e r ro r  information to identify the most likely event 

(or everits) in the face of uncertainties caused by noise disturbances 

o r  simultaneous multiple events. It should be possible to develop more  

sophist.icated methods for processing the detection filter information. 

F o r  example, if statistical information is available on noise disturb- 

ances o r  on the occurrence of events, then this information might be 

used to develop decision rules which a r e  statistically optimum in 

some sense. 

5) This research has been primarily directed toward designing 

reorganization methods for an existing dynamic system. A related 

area which seems lucrative for further research is the design of the 

basic system (e. g . ,  placement of effectors and sensors)  to make 

failures easy to identify. The material in Chapter 4 should provide a 

good basis for such research.  



APPENDIX A 

ALGORITHM FOR DETERMINING 

THE MAXIMAL GENERATOR 

Determination of the maximal generator for a vector f is 

divided into two basic steps: 

I. Finding the null space of M defined by (4-1821, 

i .  e. , all independent solutions of 

M'w = 0 - 

11. Finding a vector g i.n the null space of M'  

satisfyi.ng 

where v is the detection order of f and p is defined by condition 

(4- 108). .Note the similiarity of these two steps. They both involve 

finding vectors lyi.ng in the .null space of a given matrix. The following 

algorithm, referred to as  the orthogonal reducti0.n procedure, is a 

general method for  solving such a problem. 

Consider an .nl X n matrix 



where the v i  a r e  a rb i t r a ry  n-vectors. The orthogonal reduction 

proeedul-e is an iterative process which generates an n X n positive 

semi-definite matr ix whose range space coincides with the null space 

of V* In each iteration a row of V is tested t o  determine if i t  is 

orthogorial t o  the range space of the symmetric  matr ix.  If not, the 

range space of the matr ix is reduced s o  that this is the case.  The 

proeedu~-e begins with, any symmetric  positive-def inite matr ix 52 An 1 ' 

auxiliar:y n-vector is defined by 

if v1 is nonzero w will  b e  nonzero, since a1 is positive definite. 1 
'I' Fur thermore ,  wl will be  nonzero. A new symmetric  positive 

semi-definite matr ix  is defined by 

The prozedure continues according to the following general iteration: 

(i) With Sli f r o m  the previous iteration, form the 

auxiliary vector 



(ii) I f w i # O  - set 

o r i f  wi = - 0 set 

and return to (i) 

The algorithm has the following important properties: 

1) If Qi is positive semi-definite, w: vi = 0 if and only if 

wi = - 0.  This follows from the definition of wi. 

2 )  If Qi i s  positive semi-definite, so is  Sli+l. This is trivially 

t rue  if wi = - 0. Assume wi # - 0. For  any arbitrary n-vector z and 

any scalar  a! 

In particular, this must be true for 

Expanding (A-10) and substituting (A-11) yields 



By induction this shows that a l l  Q i  a r e  positive semi-definite if the 

s t a r t i n g  mat r ix  S2 is  at  least  positive semi-definite. 1 

3 If wi # 0. then 

and the null space  of S2i+l is the subspace formed by vi and the null 

space of Qi. In Equation (A-12) equality holds (and thus S2 i+l z = - 0) 

i f  and only if (z - a v i )  l ies  in the null space  of 51 i. But this  implies 

z must  :Lie in the subspace formed by vi and the null space of ni. 
4) At any point in the  process  the range space  of S2 is made  

up of a l l  vectors  orthogonal to  the vectors  {vl, . . . . v } . This  i- 1 

follows f rom property 3) and the fact that the s ta r t ing  ma t r ix  Sll is 

positive definite. If n1 is only positive semi-definite, the range 

space of Qi is made up of a l l  vectors  f rom the range space  of S2 

which al:e orthogonal to {vl, . . . , v 1 .  When a l l  the rows of V i- 1 

have been processed the f inal  mat r ix  an,+, has a range space  which 

coincidts with the null space  of V (for Ql positive definite). The 

number of reductions made (i. e . ,  the number of t imes  (A-8) is 

performed) is equal to  the rank of V.  



5) If Q1 i s  positive definite and wi = - 0, then vi is linearly 

dependent on the preceding vectors {vl, . . . , V .  1. By virtue of 
1- 1 

property 4) the vectors {vl, . . . , V. ) span the null space  of Oi. 
1- l 

Since wi = - 0 implies v is  in the null space  of QiJ it must  be  i 

expressible a s  a l inear combination of the vectors  {vl, . . , v 1. i-l 

The f i r s t  s tep in finding the  maximal  generator for  f can now 

be  accomplished by applying the  reduction algorithm to the matrix M "  

defined by (4-182). The algorithm begins with a symmetr ic  positive 

defi.nite matr ix ,  such a s  the identity matr ix .  The rows of M '  co r re -  

spond to  the vT in (A-4). Because of the  cyclic manner in which the 

rows of M ' a r e  generated it is not necessary to process  a l l  the rows. 

A row can be  skipped if it i s  known that it is linearly dependent on 

preceding rows, because the auxiliary vector in that case  will  be  zero. 

When a par t icular  auxiliary vector i s  found to  be  zero ,  for  example, 

(where c ' is the jth row of C I )  it i s  then known that c . K' i s  
j J 

l inearly dependent on the preceding rows in M ' .  But if this  is  so ,  

k then a l l  remaining rows of M t  generated by c '  ( i .  e . ,  c K for a l l  
j j 

k > 1 )  will  a l so  be  dependent on preceding rows of M '  . The auxiliary 

vec tors  associated with these  rows will  a l l  be  zero ,  s o  the re  is  no need 

t o  consider them in the reduction procedure.  The appearance of t h e  

f i r s t  z e r o  auxiliary vector,  a s  in (A-14), will  be  r e fe r red  to  a:; the 

intermediate termination point for  c ' The reduction process  is 
j ' 

completely terminated fo r  M'  when the intermediate termination points 



for all rows of C '  have been reached. It is of interest  t o  note that 

shnce r k  C ' < r k  C, the re  is a linear dependence among the rows of C ' , 
and  at least  one row of C' will be  terminated when it is f i r s t  processed.  

When thct algorithm is  completely terminated the final matr ix ,  denoted 

by Qf,  will  have a range space  which coincides with the null space  of 

A4 A t  that point q ' = r k  M ' i s  given by the number of reductions 

performed,  

The second s tep in finding the maximal  generator  is accomplished 

by applying the reduction procedure to the rows of the mat r ix  

s ta r t ing  with the final mat r ix  SZf f rom the f i r s t  reduction process .  The 

rows of C span a subspace which contains and is exactly one dimension 

l a rge r  than the subspace spanned by the rows of C ' .  Since the  range 

space  of Slf i s  orthogonal to  a l l  the rows of C ' ,  a l l  rows of C except 

o n e  w i l l  be terminated when f i r s t  encountered in the reduction process .  

The process  will  be  completely terminated when the termination point 

for this  one row, say c . ,  i s  reached. The f inal  symmetr ic  ma t r ix  a t  
J 

termina1;ion will be the ze ro  ma t r ix  if (A, C) i s  an  observable pair .  The 

maxima k generator is formed f r o m  the last  nonzero auxiliary vector 

before termination, 

v - l  T w = sli (c.K ) # 2 i J (A-16) 

where v = n - q f  is the detection o r d e r  of f .  By construction w l ies  i 
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in the null space of M'  a.nd satisfies 

and 

These a r e  a l l  the requirements for  the maximal generator except the 

magnitude of wi must be adjusted to satisfy (A-3). The maximal 

generator for f is then given by 

It should be mentioned that the matrix 

can be used in place of M for the second reduction process. In fact, KT 

any matrix of the form A" = A - D"C with D" arbitrary can be used in 

place of K in (A-15). The matrix K was shown because it i s  usually 

simpler than A .  As noted in Section 4.3.1, A may be in a form ( e . g , ,  

the standard form (4-403) to (4-405) ) which makes it possible to  

determine by inspection a D" which yields an A" = A - D"C cons.iderably 

simpler than A .  In this case A1'can be used in place of A in finding the 



maxima! generator. This includes using A" in defining K. When such 

a n  A "  is available it can also be used in A-15) in place of K.  

If the final symmetric matrix at termination is not the zero  

matrix, then (A, C) i s  not an observable pair and the range space of the 

firsan matrix is the unobservable space of C. The maximal generator 

was  def..ned in Chapter 4 only for the case where (A, C )  was an observable 

pair. Flow ever, it was noted in remark 4) at the end of Section 4.3.1 

that  condition (1) of detectability can be achieved for an unobservable 

p a i r  if 5' does not lie in the unobservable space of C. For  this case the 

g given by (A-19) can be used in exactly the same way a s  the maximal 

generator to achieve condition (1). If ( k  - 1) is the power of A associated 

~ ~ t h  the last nonzero auxiliary vector, then (k -t q ' )  is equal to the 

aimension of the observable space of C, which in this case is less  than 

n, The (n - q '  - k) eigenvalues of A associated with the unobservable 

space of C cannot be altered and will always appear a s  eigenvalues of 

(A - DC'). 

When using this algorithm to find maximal generators for a set  

of vectcirs {fl, . . . , fr) ,  the following procedure is suggested: 

Qi)  Starting with a symmetric positive definite matrix, 

apply the reduction process to M ' given by (4-261) 

with K and C '  defined by (4-257) and (4-255) for 

the full se t  of f i .  

(ii) For  each f i  apply the algorithm as  presented, except 

replace the starting matrix Q with the final termi-  
1 

nating matrix from (i). 



This  procedure r equ i r e s  fewer  tota l  reductions than s imply repeating 

the  complete algorithm fo r  each f.. 
1 

The las t  nonzero auxil iary vec tors  obtained a t  the intermediate  

terminat ion points in the  f i r s t  orthogonal reduction process  can be used 

t o  specify the  q '  eigenvalues of (A - DC) = ( A '  - D ' C ' )  which r ema in  

unspecified a f te r  D is constrained t o  b e  a detector gain. It was noted 

e a r l i e r  that  a t  l eas t  one row of C '  wi l l  b e  terminated when f i r s t  

encountered in the  reduction process .  F o r  th i s  r.ow t h e r e  will  be  no 

nonzero auxil iary vector.  Additional rows  of C ' will  a l so  be  terminated 

a t  f i r s t  encounter if r k  C < rn, implying a l inear dependence among 

s o m e  rows of G ( r eca l l  C i s  m X n). Assume,  then, t h e r e  a r e  d 

independent rows  in C '  where  I < (m - 1). Each  of t hese  rows wi l l  

have a final  nonzero auxil iary vector ,  Let {c ' , . . . , c ' . ) be the  
j l  J I 

f i r s t  I independent rows  of C ' .  Denote by w the f inal  nonze:ro f i  

auxil iary vector  associated with c '  and a s s u m e  the  termination point 
q r i  j 

occurs  a t  the  row c K . Then 
j 

and w i s  orthogonal t o  a l l  preceding rows of M I .  Specifically f i  



q'. -1 q'. - 1 
e V  

1 = C '  A '  1 
W f i  

W f i  = 0 fo r  a l l  p < ji P P - 
(A-23) 

From (A -21) and (A-22) it can b e  seen  that the wfi have orthogonality 

propert ies  s imi lar  to  those in (4-80) and (4-81) fo r  a detecti0.n 

generator.. They can therefore be  used in like manner  t o  specify 

eigenvalues of (A - D ' C  I ) .  By arguments  s imi l a r  to  those used f o r  

detection generators  it can be  shown that 

, I r P  w P 
f i 

= (A '  - D ' C ' )  wfi for  p = O a  . . . , q f i  - 1 

(A-24) 

and that these q' vectors  a r e  linearly independent. Fur the r ,  (A-23) 

c a n  be  used in a development s imi l a r  to  the proof of Lemma 4.5 t o  

show that the ent i re  se t  of (q '  + . . . + q t l )  = q '  vectors  {wfl. . . . 
q - I  q a  1, -1 ..., A" Wfl '  Wf2a . o . a  A' wfl } a r e  a l l  l inearly independent. 

Now if D '  is chosen to  satisfy the equation 

q'. - 1 qt.-1 
~ P ' C  CK 1 Wfi 

= D ' C ' A 1  w 
f i  

then 
9Ii 9Ii q'.-1 

(.A' - D I C ' )  Wfi = At wfi - D1 C'A' w f i  



which shows that qti eigenvalues of (A'  - D' C' ) a r e  given by the roots 

0 f 

9 q'. - 1 1 s + p ' . ,  s + ... + pfil = 0 (A-27) 
19 

By requiring Dr to satisfy equations such a s  (A-25) for i = 1, . . . , 1 
a total of (q; + . . . + q;) = q' eigenvalues can be specified by choice 

of the Q;. Combining all  these equations into a single matrix equation 

yields 

where 

(A-29) 

R elation (A -23)  ensures that 

and therefore by Lemma 4 . 3 ,  (A-28) always has a solution. 



APPENDIX B 

ALGORITHM FOR GENERATING A AND THE Q i  

FOR NONMUTUALLY DETECTABLE VECTORS 

It is assumed that the maximal detection generators for  the se t  

of output separable vectors {fl, . . . , fr] have been found. The 

detection o rde r  of fi is v im If these vectors a r e  not mutually detect- 

able the dimension of the excess subspace is 

where (11 - q ' )  is the group detection order  of the above se t  of vectors.  

The orthogonal reduction procedure described in Appendix A can be 

used ko generate a basis  fo r  the excess subspace a s  defined in Section 

4 , 3 . 3 .  The algorithm begins with the terminating matr ix  which 

res~xlts from step (i) in the procedure suggested in Appendix A for  

finding lhe maximal generators for  a se t  of vectors.  Specifically, this 

is the terminating matr ix which resul ts  when the reduction procedure 

is applied to  M'  given by (4-261). Starting with this positive semi-  

definite matr ix  the reduction process is applied to the rows of the 

matrix 

where 



with  K given by (4-257). T h e  Zi i = 1, . . . , r a r e  t h e  r o w s  of the  

r X n m a t r i x  

wi th  F give.n by (4-242). 
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It can be shown that the rule presented in Appendix A for  identi- 

fying intermediate terminat ion points is also valid for this algorithm. 

The reasoning is somewhat different, however. Let gi be the maximal 

generator for  f i .  From the properties of a maximal generator it can 

be  verified that 

- c .K P .  gi = 0 f o r a l l  P 2 0 i f  j # i  
3 

(B-8) 

These relations can be used in a development similar to the proof of 
V 

Lemma 4 . 5  to show that al l  (v l  + . . . + up) rows of M I  a r e  linearly 

independent of each other and a l l  rows of M ' as  well. This means that 

and 

All aux-diary vectors associated with the rows of must be nonzero 

because a zero auxiliary vector implies the associated row is dependent 

on previous rows. Assume the final nonzero auxiliary vector for  ci 
vi+kei-1 

L 

occurs at row CY.K 
1 

i. e. ,  the i.ntermediate termi.nation point 
vi+kei 

f o r  5 .  occurs at  row ;.K . Since .no no.nzero auxiliary vectors 
1 1 

u 

can be associated with rows in MI, 
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> 0 for  a l l  i  = 1 ,  . * - $  r ke i  - (B-11) 

If kei > 0, le t  %. denote the  final  nonzero auxil iary vector fo r  
1 i" 

Then 

Y 
Y 

When kei > 0 ,  wi mus t  appear  during process ing  of M It is ortho- 2 ' 
4 C, 

gonal t o  a l l  preceding rows  in M2 a s  wel l  a s  a l l  rows of M1 and MI. ,  

S O  

M i  = - 0 

P w  c K  wi = 0 f o r  P = 0,  .... v . + k e i - 2  a n d a l l  
J J 

j = l y  o e e ,  r 

and 

Now consider  the  s e t  of (kel + . . . + ker) vec tors  

It is assumed h e r e  that  a l l  the  k a r e  g rea t e r  than ze ro .  If s o m e  kei e i 

is z e r o  the  corresponding 2; does not appear  in th i s  s e t  at  al l . ,  But i 

even if s o m e  k a r e  z e r o  and the  corresponding w i  do not appear ,  e i  

t h e r e  is still (kel + . . . + ke,) vec tors  in the  s e t .  Al l  Gi  f o r  

i = 1, . . . , r a r e  shown in the  s e t  t o  avoid complicating the not:ation, 
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The case where some k = 0 is discussed later.  Relations (B-12) to ei 

(B-9 5) can be used in a development similar  to the proof of Lemma 4 .5  

to show that al l  vectors in the above set  a r e  linearly independent. It 
u 

can also be shown that they a l l  lie in the null spaces of M' and MI. By 

construction each Gi  lies in the null space M I ,  and since this subspace 

is invariant with respect to K, a l l  other vectors in the set  must also be 

contained in the null space of M ' .  The fact that all  the vectors lie i n  

the null  space of follows from (B-14) and the assumption that 

k . > 0 ,  The maximum possible number of independent vectors e r 

contained in the null of M ' and k1 is 

= n - q ' - ( v l +  . . .+ V r )  = ke 

(B- 16) 

It can be shown that if (A, C) is an observable pair,  the final terminating 

matrix for this algorithm is the zero matrix ( the case (A, C) not 
V 

oSserva'r3'le will be discussed later).  If 52 is the final terminating 

matrix, it must satisfy 

and 



which implies 

Observing that 

it may be concluded that (B-18) and (B-20) imply 

which a lso  implies 

If (A, C) i s  observable,  this  implies 

The posit*ive semi-def inite mat r ix  which remains  a f te r  processing 
B 

has  a rank of 



Since each reduction reduces the rank of the positive semi-definite 

matrix by one, ke reductions must be performed during the processing 

of 6T2 i r i  order to produce a final terminating matrix of rank zero  (the 

zero matrix).  This means that at least ke  rows of G2 must be 

processed before termination. Excludi.ng the rows EiuP for 
Vi+k . 

P 2 k . + v. (because termination of Fi occurs at F . K  el  L 1 
the total 

number of rows of processed before termination is  (kel + . ., 4- ker). 

Therefore 

This resu l t  together with (B-17) implies that 

and shows that the .number of reductions is, i.n fact, equal to the number 

of rows processed before termination. This means that a reduction is 

performed for every row processed before termination. No zero 

auxiliary vector can occur before termination because that row would 

not procuce a reduction. Hence the termination point for each Ei is 

signaledl by the f irst  zero auxiliary vector just as  for  the algorithm in 

Appendix A. 

By virtue of (B-6) to (B-8) no vector lying in the subspace 

formed by  the vectors 

can be in  the null space of GI. On the other hand al l  vectors in the set 



a r e  in the null space of Ikl. Therefore,  the composite s e t  of vectors  

a r e  l inearly independent and form a bas is  for  the null space  of 

Define the n X ke mat r ix  

(B- 28) 

Using (B-5), Equation (4-268) can be  written 

and the.n 

F r o m  (B-14) and (B-28) it is c lear  that 

7.. = 0 - for  j = 1, ..., v 
1J i 

k e l - l v  - k -1 and s o  the vectors  { . . . , K W I J  W 2 ,  . K e r  Gr] form a 

bas is  fo r  the excess  subspace a s  described in Section 4.3.3.  The Bi 

a r e  given by 

(B- 3 2 )  



From (B-14) it can be seen that the Qi have the form 

w h e r e  

(B-34) 

and in view of (B-15) 

The A matrix can be obtained from the equation 

(B- 3 6)  

S i n c e  rk Z = kc, this equation can be solved for A in the closed form 
e 

This form is more general than is necessary, however, because from 

the f o r m  of Ze  in (B-28) it can be seen that A has the form 

(B- 38) 



where 

and 

It is only Gecessary to solve (B-36) for the last column in each ~f the 

blocks of A. 

it was noted earlier fh2f if some k = 0 ,  then w- d c ~ s  not 
e j J 

appear in . In this case A wil l  have fewer blocks than shown in 
f? 

(8-38). If there ate  r ' nonzero k then there rill be r' blocks 
ei' 

It was assumed prev~ous~y that (A.C) 'is an observable pair. If 

(A,  C) is not observable, the algorithm is still valid an$ A and the Qi 

h z ~ e  the same significance as in the obser~able case- Tho only 

difference is that the fha l  terminating matrix T ~ U  ZKR be zero, but wil l  

have a range space which cciacides with the unobservable space of C 

The eigmvahes of A (and A - DC) ) associated with the unobservable 

space 5 :  zot appear in A, brrt since they remain nDchanged for LZ? D, 



they are not of interest in investigating mutual detectability . 'The 

eigenvalues of A are t h ~ s e  eigenvalues of (A - DC) which can be 

influenced by the choice of D, but which are cncontrolled if D i s  

constraked to be detector gain for a l l  vectors in the set {f l ,  . . . , f...) . 



APPENDIX C 

STANDARD MATRIX FORM 

AND DECOUPLABLE REPRESENTATION 

In th i s  appendix a t ransformation ma t r ix  which produces the  

s tandard f o r m  descr ibed in Section 4 .3 .6  is derived. Also,  it w i l l  be 

shown how a sys t em representat ion may b e  augmented t o  produce a 

decouplable representat ion.  

Le t  the  ma t r i ce s  A and C be  n X n and m X n respectively.  

Assume that  ( A ,  C) i s  an observable  pair  and that  

s o  a l l  rows  of C a r e  l inear ly  independent. A s e t  of n independent row 

(1 X n) vec tors  i s  t o  b e  generated a s  follows. Consider each row of 

t he  m a t r i x  

s t a r t i ng  .with the  top row and working downward. Retain only those 

rows  which a r e  independent of a l l  preceding rows.  Let  (c,, . . . 
L 

nl-1 n2-1 n,- 1 . . . , clA , c2 ,  . . . , c2A , ..., c ,, . . , cmA ) be  the 

s e t  of bas i s  vec tors  s o  obtained, where  c i  is the ith row of C (the 

vec tors  a r e  not shown in the o r d e r  in which they w e r e  obtained). Since 



( A ,  C) is observable, there  must be n i.ndepe.nde.nt rows, s o  

n. 
The row c.A for  each i does not appear in the set ,  s o  it must be 

1 

dependent of the preceding rows. Then c i ~ n i  can be expressed i n  

terms of' those basis  vectors which precede it in M 

Tne final summation appears only for  i > l. The t e r m s  c l ~ P - l  appear 

i n  (C-4) only if they a r e  members  of the basis ,  i. e., only if P I nQ . 
This fact can be  recognized without changing the summation limits by 

requiring that 

Similarl:y for  I < i 

The second summation in (C-4) is written separately in order  to  call  

attention t o  the significance of the w; . F r o m  the way in which the 

basis vet:tors were  selected it is c lear  that n. cannot be  la rger  tha.n 
1 

the decoupling order  of ci. On the other hand, it can be  verified f rom 

(C-4) and Equation (4-433) in the al ternate definition of decoupling 

order that if the second t e r m  in (C-4) is ze ro  (i. e. ,  ogC = 0 fo r  a l l  i Q 

1 < i) then ni is a t  least a s  large a s  the  decoupling o rde r  of ci. This 



implies  that  ni is equal t o  the  decoupling o r d e r  of ci if w;l =: 0 for 

a l l  l < i (note is defined only fo r  4 < i). If u ; ~  # 0 for. some 

Q < i, then Equation (4-433) is not satisfied f o r  ni, implying that  ni i s  

l e s s  than the  decoupling o r d e r  of cia This  shows, incidently, that al 

is always equal t o  the  decoupling o r d e r  of c l  because the  second 

summation does not appear  in (C-4) when i = 1. 

Now define a new s e t  of n independent bas i s  vec tors  a s  fol lows: 

fo r  j = 1, . . . , n - 1 (if ni > 1) and i = 1, . . . , m. Define t h e  trans- 
i 

formation m a t r i x  



The tran:;formed matrices a r e  

To identify the forms of and c, it is necessary to determine 

expressions for  the basis vectors e when post-multiplied by A .  Now 
i j  

f o r  j = 2,  ..., n. - 1 
1 



e..A = e. . 
1-J 1, J-1 i l j C L  fo r  j = 2 ,  ..., n - 1 i 

L = l  

For  j = 1 

QC- 14) 

.n 
Substituting (C-4) for  c.A i J  all  te rms cancel except those involving 

1 

c and the result i s  m J  



Combini.ng a l l  such equations for  i = 1, . . . , m into a single matr ix 

equation yields 

- 0. . .Pa 

-u". . . - ' I -  

- m 

Wmlnm . . . .  W mmn - m 

The triangular matr ix  on the left is clearly nonsingular and its inverse 

also has a triangular fo rm 



Then ((2-18) yields 

a mln, . . a rnma - m 

where 

r1 . . o . . . . .  

a mln  ' * ' a mma m m 

a :k $: 

m l '  " 
. a m, m-1 



The ith row of (C-20) is 

Post-mu.ltiplying ((2-10) by Te yields 

From Equations (C-13), (C-15), a.nd (C-22) the form of A is  seen 

wi th  

0 

1 

W.. = 
11 

0 

6 

0 a.. 
11 1 



a . .  
1 ~ 1  

a . .  
1-3 ni 

a. .  
J 1.n 

i 
0 

where n. 2 n The a . .  a r e  defined a s  follows: 
J i s  111 

The elements a . .  and a'\rregiven by(C-21)and (C-19) respectively. 
1J ni i j  

Post-multiplying (C-11) by Te yields 

and f rom (C-7) it is easily seen that 



with  
- 
c = [ o  . . o  11 i (1 X ni) (C-30) 

The f ina l  ze ros  in the last column of A.. appear when n. > n and a r e  
31 3 i  

a result. of  (C-5). F r o m  the fo rm of the defining equation (C-19) for  
.,A 

the  a; i t  can be verified that the conditions on wlrl given in (C-6) 

apply to  tihe a'' a s  well, i. e. , i l 

rl. 

It is for Chis reason that the re  is no all' in 2i: .. given by (C-27). Also 
~i 3 1  

f rom (@-$9 )  

.t> 1. 

a = 0 fo r  i5l  (C-32) il 

If the a; a r e  ze ro  fo r  a l l  l < i, then ni is equal to  the decoupling 

order of ci. If a l l  the a: a r e  zero  then (A, C) is a decouplable pair ,  

and  a.nd have the standard fo rm presented in Section 4.3.6. 

It will now be demonstrated how a system representation may 

be augmented t o  achieve a decouplable representation. Let (A, B, C) 

be a mini-ma1 plant representation where A, B, and C have dimensions 

n >< n , n X r ,  and m X n respectively. An equivalent representation is 
6d &@ 

arly triplilt (A, B, ?!) (with dimensions X g, X r, and m X %) 

satisfying 

N 

C A ~ B  = C A ~ B  for  a l l  j 2 0 (C-33) 

S i n c e  (A, B, C) is minimal, (A, C) is an observable pair.  Let qi be  the 

decoupling o rde r  of ci, the ith row of C. Suppose 



s o  by Theorem 4 . 7  ( A ,  C )  is  not a decouplable pa i r .  The triplet  ( A ,  B, C) 

will  b e  augmented to obtain an equivalent observable representation 

@ - d @  

( A ,  B, C) with g. having the s a m e  decoupling o rde r  a s  c and w i t h  
1 i '  

F i r s t  assume 

The case  r k  C < m wil l  b e  considered la te r .  Let ( c ,  , . . . , c,A 
d 

, c,, 
n -1 I I L 

. . . , cmA m ) be  the se t  of n independent bas is  vectors obtained a s  

described a t  the beginning of this appendix. It was noted ear l ie r  that 

Let 

(C- 38) 

(C- 39) 

N P4 

where ii i s  given by (C-35). The ma t r i ces  A 2 2  and A I 2  have dimen- 

s ions (% - n) X ('E - n) and n X (i?i - n) respectively,  where  



It i s  easily verified f r o m  the form of x, , and C" that they satisfy the 
N N 

requirernent for an  equivalent representation fo r  any A12 and AZ2 .  It 
IV 

mus t  now be shown that A and AZ2  can be chosen s o  a s  t o  make 
12 - & 

(A, C) a decouplable pa i r .  
N 

Before selecting k12 and A22  a simplification can be  made 

which wi.11 considerably reduce the  amount of algebra involved. F i r s t  

assume that A and C a r e  in the standard fo rms  (C-24) to (C-30) derived 

i n  this appendix. It was shown in Section 4.3.6 that decoupling o rde r ,  

and thus  the property of decouplability, i s  invariant with respect  to  

replacement of A by (A - DC).  In the present  context this means that 
?4 

i f  ([x- f;''C] , c) can be shown to be a deeouplable pair fo r  any D", then 

(,q, e) is; a lso decouplable. Let  

where D" i s  an n X m matr ix .  Then 

Now w i t h  A and C in the f o r m  of (C-24) to  (C-30) it is easy to  s e e  that 

C" can b e  chosen to  cancel a l l  the aijl elements in A ,  yielding 



with 

A".. = 
11 

where n. > n Define 
J - i '  

.la ,C 

a . .  
1J 

Now for  each i for  which 

let there  be an associated 1 X (g - n) row vector 5 These ci and  x22 i"  

can be chosen arb i t ra r i ly  except for  the following two requi ren~ents :  



( i )  The (E - n) row vectors  

q.-ni-1 - 1 5 - .. SiAz2 ; a l l  i such that qi - ni > 0 1 

a r e  linearly independent. 

where the a r e  a rb i t r a ry  s c a l a r s .  The a r e  sca la r  functions 
ip 2 si 

of t h e  a!. in the Allij and will  b e  defined la te r .  The pr ime on the second 
11 

summation sign in (C-51) is to indicate that the sum i s  to  include only 

those 1 fo r  which ql - nl > 0 .  The summation s t a r t s  at  1 = 2 because,  

a s  noted near  the beginning of this appe.ndix, 

/cl 

Note that (C-51) implies the eigenvalues of A22 a r e  given by the  roots  

of the equations 

for those i such that qi - ni > 0 Since the c?! a r e  a rb i t ra ry ,  the 
i P 

W N 

eigenvalues of A 2 2 a r e  almost  a rb i t ra ry .  The  A12 ma t r ix  is constrained 

to sat isfy the equations 



These  make  up a tota l  of n independent equations which uniquely 

de te rmine  A"12. 

It mus t  now b e  shown that the  decoupling o rde r  of , the i 
t h 

IV 

row of C,  is qi  f o r  a l l  i = 1,  . . . , m .  To establish this  it is necessary  

- 2 1 j  t o  develop a general  expression f o r  ci . F o r  j  2 1 

Using (C-54) th i s  reduces  t o  

and 

f o r  j > ni 

3 63 



From the  form of A" and C it can be verified that 

c .  A" P = 2 . c1 A"P for p 2 ni 
1 

(C-60) 
18 P 

1 =1 

wi th  

The sca1.ar-s wil a r e  functions of the a?. appearing in the A f t j .  The 
13 

exact furaetional relationship between 0 
2 P and aij  

is .not .necessary to 

prove decouplability, but a s  a matter of interest the G. a r e  eive,n'by 
11 P 

the matrix equation 

w h e r e  
if p < n 

j 
3 ((2-63) 

ijp 
if p > n  

j 

* 
Incidentrally, Gil is equal to Ui( in (C-4). When ni = qi , (C-60) 

i 
reduces to 

Then - j - 
ci A 

- 0 for  al l  j 2 ni - (C-65) 



which impl ies  t h e  decoupling o r d e r  of ri cannot b e  l a r g e r  than n = qi.  
i 

By T h e o r e m  4.9 t h e  decoupling o r d e r  of 'Zi cannot b e  s m a l l e r  than qi ,  

s o  one  m a y  conclude immedia te ly  tha t  if ni = qi then t h e  decoupling 

o r d e r f o r  f i  is qi. Now c o n s i d e r t h e c a s e w h e r e  n. < q  P o s t -  
L i' 

mul t ip ly ing (C-60) by y ie lds  

i-l  

c - A ~ ~ ~ ~ ~ ~  1 = 1 ijilp el A"P X12 f o r  p 2 ni (C-66) 

a =l 

Equat ions  (C-54), (C-551, and (C-61) indicate  tha t  t h e  only nonzero  

t e r m s  in t h e  above summat ion  a r e  t h o s e  1 f o r  which p = n - 1 and  
I 

nQ < q Q .  Then  

w h e r e  6 is t h e  K r o n e c k e r  del ta  
p > - l 

6.. = 
1.1 

Then  (C-59) b e c o m e s  



n-a 
i 

where the Kronecker delta was used to  eliminate the summation over p 

and 

Letting j = qi and using (C-51), (C-69) becomes 

Now define the following s e t  of I X n row vectors:  



I f n . = q  let 
1 i 

/- v = [ c ~ A " ~  
ij 

,  01 f o r a l l j l l  4'6-12) 

If n. < q. let 
1 1 

Then if n. = q 
1 i 

;. ~ 1 1 j - 1  A/ = v 
L i j 

for  a l l  j  2.1 ( 6 - 7 4 1  

and for j  > ni 

Using (C-60) this becomes 

i- 1 i- 1 
N %-l = v.. + 1 w- a, / +.# Ci A N 

IJ p j -  p j  + 2 w i t , j - l  v l j  (c-17) 

Now define the m X n matrices 



From the form of (C-74), (C-75), and (C-77) it can be verified that for  

any j 

JQ. 

where  7r is an (m j) X (m j) triangular matrix of the form 
V j 

A 

The lower left half of T is made up of the w. and wilj in (C-77). 
V j I P  j 

A 
For present purposes the significant feature of T is its triangular 

V j 
form. From (C-71) 

Because of the special form of A "  



qi . 
This implies that Fi A"" IS linearly depe,ndent on the rows of the matrix 

Since 

q.  
N '"11 1 this also implies ciA is linearly dependent on the rows of the matrix 

Theref ore 

which shows that the decoupli,ng order of gi is no larger than q 
i "  

Since by Theorem 4.9 the decoupling order of Fi cannot be less than 



qi, it niay b e  concluded that it is ,  in fact,  equal t o  qi. To establish 

that (x", c) is decouplable it is  only necessary  t o  show that this  pa i r  

I S  observable.  Because of requirement  (i) on the  C i  and the fact that 
nl- 1 n -1 

the n row vectors  { c  . . . , clA" 
1' 

, c2, . .., cmA" } a r e  

linearly independent, it follows that the row vectors  

N N 

, , a , vZ1, - , v ) a r e  likewise linearly independent. 
lq1 "qm 

This  means 

And by (C-79) this  implies 

-'ll This shows that (A , C) i s  an observable pa i r ,  and i s  therefore 
0.' 

d eeoup lable. Consequently, (A, C) i s  a l so  decouplable. 

When 

t h e  development proceeds in a s imi l a r  way except that fo r  the dependent 
N 

rows 0:: C the associated C i  appear in C. T o  clarify this,  suppose 



and as sume  the f i r s t  m '  rows of C a r e  independent. Par t i t ioc  C s o  

that 

where  C1 is  m 'X n and 

The rows of C2 a r e  dependent on the rows of C1. Now Ax and have 

the s a m e  f o r m s  a s  previously given in ((2-38) and (C-39), but ? bas 

the fo rm 

rr/ 

The rows of C22 a r e  chosen to  b e  linearly independent. They play the 

s a m e  ro le  a s  the 5 .  in the  previous development. Note that this  makes 
1 

It is again easily verified that this  is an equivalent representation. NOW 

A and C1 can be  put into the standard fo rms  (C-24) to  (C-30). A 

simplification s imi l a r  t o  the previous case  i s  achieved by taking 



w h e r e  ~ 1 ' ; ~  is n X m '  and is selected so that (A - D ' ; ~  C1) has the 

form of A " given by (C-44) to (C-48) (except that (C-44) has m' 2 

2 blocks instead of m ). Then 

From this poi.nt on, the developme.nt follows the previous case with 

n = 0 for  the rows of C2. 
i 
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